Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff Dec 2016

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in realizing these goals stands in the development of reliable techniques to control the engineered cells and their behavior from the …


Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis Nov 2016

Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis

Biology Faculty Publications

The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution …


Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez Oct 2016

Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez

Publications and Research

Vision loss in adults with Age Related Macular Degeneration (AMD) is attributed to damage of retinal photoreceptor cells that initiate vision by absorbing light. Mouse models have suggested that transplantation of precursor cells may be a novel approach to restore vision. This project uses a combination of electrotactic and chemotactic stimuli to promote and guide CNS cell migration within a microdevice model.


Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt Oct 2016

Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt

Chemical, Biological and Materials Engineering Faculty Publications

Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …


Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi Apr 2016

Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi

UCARE Research Products

This study seeks to engineer an in vitro co-culture model to elucidate the role of glioma-astrocyte interactions on molecular changes in the tumor microenvironment. The use of patterned co-cultures created with polyelectrolyte multilayers and micromolding in capillaries will allow tthe investigation of cell-cell communication. This study will lead to better understanding of the role of healthy cells in cancer progression and potential treatment options.


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and …


Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day Jan 2016

Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day

Research on Capitol Hill

Natural spider silks have long been recognized for their combination of incredible strength and elasticity. Spider silk is more elastic than nylon, tougher than Kevlar, and stronger than steel by weight. Due to an inability to farm spiders, much work has been done to produce spider silks in transgenic hosts for large -scale production. Our work was done using recombinant spider silk proteins produced in transgenic goats and the bacteria E. coli.

More recently spider silks have also been recognized for their biocompatibility and lack of immunogenicity. Spider silks' incredible strength and ability to be implanted safely within the body …


Fluorescent Nanocomposite Of Embedded Ceria Nanoparticles In Crosslinked Pva Electrospun Nanofibers, Nader Shehata, Soha Gaballah, Effat Samir, Aya Hamed, Marwa Saad Jan 2016

Fluorescent Nanocomposite Of Embedded Ceria Nanoparticles In Crosslinked Pva Electrospun Nanofibers, Nader Shehata, Soha Gaballah, Effat Samir, Aya Hamed, Marwa Saad

Biology Faculty Publications

This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of …


Accessible Bioprinting: Adaptation Of A Low-Cost 3d-Printer For Precise Cell Placement And Stem Cell Differentiation, John A. Reid, Peter A. Mollica, Garett D. Johnson, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs Jan 2016

Accessible Bioprinting: Adaptation Of A Low-Cost 3d-Printer For Precise Cell Placement And Stem Cell Differentiation, John A. Reid, Peter A. Mollica, Garett D. Johnson, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based …