Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain Nov 2013

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain

Chemical and Materials Engineering Faculty Publications

Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies; however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree …


Formulation To Predict Lower Limb Muscle Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, A. Barjau, Benjamin J. Fregly, Josep M. Font-Llagunes Oct 2013

Formulation To Predict Lower Limb Muscle Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, A. Barjau, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

The human body has more muscles than Degrees of Freedom (DoF), and that leads to indeterminacy in the muscle force calculation. This study proposes the formulation of an optimization problem to estimate the lower-limb muscle forces during a gait cycle of a patient wearing an instrumented knee prosthesis. The originality of that formulation consists of simulating muscle excitations in a physiological way while muscle parameters are calibrated. Two approaches have been considered. In Approach A, measured contact forces are applied to the model and all inverse dynamics loads are matched in order to get a physiological calibration of muscle parameters. …


Optimization Problem Formulation For Predicting Knee Muscle And Contact Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes Aug 2013

Optimization Problem Formulation For Predicting Knee Muscle And Contact Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

The human body has more muscles than degrees of freedom (DOF), which leads to indeterminacy in the muscle force calculation. In this study, an optimization problem to estimate the lower-limb muscle forces during a gait cycle of a patient wearing an instrumented knee prosthesis is formulated. It consists of simulating muscle excitations in a physiological way while muscle parameters are calibrated.