Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal

1995

Biomaterials

Discipline

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Scanning Electron Microscopy Studies Of Ceramic Layers And Interfacial Regions For Calcium Phosphate-Coated Titanium Dental Implants, W. A. Brantley, E. Tufecki, J. C. Mitchell, D. W. Foreman, E. A. Mcglumphy Jan 1995

Scanning Electron Microscopy Studies Of Ceramic Layers And Interfacial Regions For Calcium Phosphate-Coated Titanium Dental Implants, W. A. Brantley, E. Tufecki, J. C. Mitchell, D. W. Foreman, E. A. Mcglumphy

Cells and Materials

The surface and cross-section characteristics of the plasma-sprayed calcium phosphate coatings, along with the microstructures and elemental compositions near the titanium alloy interface, were investigated by scanning electron microscopy for two different dental implants of proprietary compositions: Integra!® (Calcitek) and BioVent ® (Dentsply). Elemental concentrations (Ca, P, Ti, AI, and V) near the interfaces were obtained by X-ray energy-dispersive spectroscopy. Coating surfaces exhibited a splat deposition topography of greatly differing microstructural scale for the two implants, along with other features characteristic of the plasma-spraying process; cross-sections of the coatings revealed minimal porosity. Some interdiffusion of principally titanium and calcium was …


Backscattered Electron Imaging To Enhance Microstructural Contrast In Poly(Methyl Methacrylate) Bone Cement Fracture Analysis, L. D. T. Topoleski, P. Rutledge, X. Lu Jan 1995

Backscattered Electron Imaging To Enhance Microstructural Contrast In Poly(Methyl Methacrylate) Bone Cement Fracture Analysis, L. D. T. Topoleski, P. Rutledge, X. Lu

Cells and Materials

Poly(methyl methacrylate) (PMMA) bone cement is used as a grout to secure joint replacement prostheses into bone. It has a distinct microstructure made up of: prepolymerized beads, an interbead matrix polymer, a radiopacifier {barium sulphate (BaS04) or zirconium dioxide (Zr02)}, and pores or voids; the radiopacifier is found only in the interbead matrix of the cured bone cement. The mechanism of slow or fatigue crack growth appears to be initial micro-cracking through the interbead matrix, followed by coalescence of the microcracks to form a continuous crack. Thus, distinguishing the interbead matrix from the pre-polymerized beads is important for investigating fatigue …


Biomaterials Associated Infections: The Scale Of The Problem, David J. Stickler, Robert J. C. Mclean Jan 1995

Biomaterials Associated Infections: The Scale Of The Problem, David J. Stickler, Robert J. C. Mclean

Cells and Materials

The biomaterials used in the manufacture of implanted prosthetic devices profoundly impair the host's ability to opsonise and phagocytose invading microbes. As a result, while these devices generally provide effective relief from painful, crippling and life-threatening disorders, they can also induce vulnerability to infection in the recipients. The surfaces of the implants are susceptible to colonisation by microbial biofilms. The cells in the biofilm.s are further protected against opsonophagocytosis and are also resistant to antibacterials. Device associated infections thus tend to be refractile to antibiotic therapy and in many cases the device has to be removed before the infection will …