Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biomedical Engineering and Bioengineering

Bioluminescence Resonance Energy Transfer (Bret) - Based Nanostructured Biosensor For Detection Of Glucose, Eugene Hwang Nov 2019

Bioluminescence Resonance Energy Transfer (Bret) - Based Nanostructured Biosensor For Detection Of Glucose, Eugene Hwang

Electronic Thesis and Dissertation Repository

Bioluminescence resonance energy transfer (BRET) is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through resonance energy transfer. In this thesis, BRET technology is incorporated into a sensor comprised of a recombinant protein and quantum dots. The recombinant protein, which includes the bioluminescent protein, Renilla luciferase (Rluc), is used as the donor molecule and cadmium tellurium quantum dots as the acceptor molecules. Separating the donor-acceptor pair is a recombinant protein, glucose binding protein, which changes conformation upon binding glucose and brings the pair closer together, thus allowing BRET to occur. Optimization of the …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Nanostructured Biosensor For Tear Glucose Detection Based On Bioluminescence Resonance Energy Transfer (Bret) Mechanism., Denghuang Zhan Aug 2017

Nanostructured Biosensor For Tear Glucose Detection Based On Bioluminescence Resonance Energy Transfer (Bret) Mechanism., Denghuang Zhan

Electronic Thesis and Dissertation Repository

Bioluminescence Resonance Energy Transfer (BRET), a sensitive, non-destructive and self-illuminated method, has been now commonly used to test protein interactions. Here, we describe a BRET sensor for non-invasively detecting glucose molecules. The sensor is made by the bioconjugation of quantum dots and recombinant protein. The recombinant protein contains the bacterial glucose binding protein (GBP) and a bioluminescent protein, Renilla luciferase (Rluc), used as the donor with the emission peak at 470 nm, which is able to excite the acceptor of BRET sensor made of cadmium tellurium quantum dots ( CdTe QDs) with the emission peak at 570 nm. The distance …


Genetic Engineering Studies Of Escherichia Coli And Microalgae For Expression Of Hydrolytic Enzymes And Development Of High Throughput Screening Technique, Shreyas S. Yedahalli Jul 2017

Genetic Engineering Studies Of Escherichia Coli And Microalgae For Expression Of Hydrolytic Enzymes And Development Of High Throughput Screening Technique, Shreyas S. Yedahalli

Electronic Thesis and Dissertation Repository

The field of biochemical engineering has made substantial progress through major advances in genetic and metabolic engineering with applications in various sectors such as energy, food science, pharmaceuticals, etc. The hosts used for this work are constantly broadening. A host particularly important for energy applications are microalgae. The potential to enhance microalgae genetically for energy applications is not well explored and was therefore investigated in this thesis. Non-photosynthetic micro-organisms and photosynthetic microalgae offer a potential approach to enhance sustainable biochemical production. In this study expression vectors for Escherichia coli (E. coli) and Chlorella vulgaris (C. vulgaris) …


Fermentative Processes Requiring Low Solubility Feed Gases: An Investigation Into Gas-Dependent Microorganisms, Eric W. Doerr Jul 2016

Fermentative Processes Requiring Low Solubility Feed Gases: An Investigation Into Gas-Dependent Microorganisms, Eric W. Doerr

Electronic Thesis and Dissertation Repository

Two bioprocesses were separately investigated based on their common interest of using gaseous substrates that have low solubility. The first process involved the development of a mixed culture using two organisms capable of utilizing glycerol and carbon monoxide separately to increase biobutanol production, while the second process involved an investigation of different production media used in aerobic xanthan production of Xanthomonas campestris with pressurization effects. It was determined that Clostridium pasteurianum should be used with an organism like Clostridium carboxidivorans or Eubacterium limosum in order for butyrate uptake at 3 g/L to occur with a minimum 0.1 g/L butyrate production. …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Drug Delivery To The Respiratory Tract Using Dry Powder Inhalers, Doaa M.R. Mossaad Apr 2014

Drug Delivery To The Respiratory Tract Using Dry Powder Inhalers, Doaa M.R. Mossaad

Electronic Thesis and Dissertation Repository

Aerosols are an effective method to deliver therapeutic agents to the respiratory tract. Among aerosol generation systems, dry powder inhales have been attractive area of research for both local and systemic delivery of drugs. The challenge of any inhalation delivery system is to generate particles with an adequate range of particle sizes. In order to advance powder aerosol technologies, researchers have recognized the importance of investigating determinants affecting powder dispersion. The effect of particles’ surface characteristics, inhalation airflow rate, inhalation device, and development of an effective drug-carrier system are some of the fundamental areas that have been under investigation.

The …


Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen Jan 2014

Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen

Electronic Thesis and Dissertation Repository

Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the surface of nanoparticles to have enhanced biocompatibility and functionality for the in vitro and in vivo applications, especially in delivering locally and recognizing biomolecules. Herein, the goal of this research work is to develop advanced NPs with well-tailored surface functionalities and/or bio-functionality for the applications in cell tracking and analytes detection.

In the first project, quantum dots incorporating with gelatin nanoparticles (QDs-GNPs) have been developed for bioimaging applications. Two different approaches have been …


Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf Aug 2013

Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf

Electronic Thesis and Dissertation Repository

Limited fossil fuel reserves, increasing demand for energy in all parts of the world are some driving forces to look for new sources of transportation fuels. Among different options available, microalgae are currently attracting wide interests as an alternative and renewable fuel source.

Microalgae are single cell photosynthetic organisms that are known for rapid growth and high energy content and as a part of photosynthesis; they produce oil that can be used as a feedstock for biodiesel production. Some algae strains could contain lipid up to 80% of the dry biomass. The amount of lipid production is in direct relation …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa Oct 2012

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …