Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Bilateral Ground Reaction Force Jumping Asymmetry And Performance, Keith Painter Aug 2021

Bilateral Ground Reaction Force Jumping Asymmetry And Performance, Keith Painter

Electronic Theses and Dissertations

The prevalence of asymmetry in performance research has increased in recent years with mixed results. Much of the performance research has focused on unilateral jumping activities attempting to show relationships to other performance variables. However, bilateral ground reaction forces (bGRF) from jumps are more frequently assessed in athlete monitoring programs and the asymmetry from those jumps could be a simple addition to data already being collected. Research into bGRF asymmetries is lacking and no studies have addressed longitudinal changes. Additionally, research into the relationship of asymmetries to performance have infrequently used athletes. For these reasons, this dissertation will focus on …


Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore May 2013

Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore

Electronic Theses and Dissertations

Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate.

Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than 0.9750 for hydrogen peroxide concentrations between 1.0 x 10-4 M and 1.0 x 10-1 M. The developed technique’s LOD was approximately 10 ppm. Variability of the prepared …


Nitric Oxide Production: A Mechanism For Inhibition Of Chlamydia Trachomatis Replication, Bojun Chen Dec 1993

Nitric Oxide Production: A Mechanism For Inhibition Of Chlamydia Trachomatis Replication, Bojun Chen

Electronic Theses and Dissertations

Chlamydia trachomatis (CT) replicates in macrophages, but is inhibited by IFN-$\gamma$ or LPS. IFN-$\gamma$ and/or LPS induced nitrite production in mouse peritoneal macrophages, macrophage cell lines (RAW264.7 and J774A.1) and McCoy cells. Kinetic studies indicated that peak production occurred 48 hours post-treatment. CT infection itself was insufficient to induce nitrite production, but resulted in enhancement of nitrite production in IFN-$\gamma$-treated cells. Treatment with IFN-$\gamma$ or LPS resulted in significant inhibition of CT replication in these cells. Strong correlation between nitrite production and inhibition of CT replication was observed in RAW264.7 and J774A.1 cells (correlation coefficients: $-$0.93 and $-$0.94, p $<$ 0.001). N$\sp{\rm g}$- monomethyl-L-arginine (L-NMMA) specifically inhibited nitrite production and partially reversed inhibition of CT replication in macrophage cell lines. NOS mRNA was measured in RAW264.7 cells by Northern blot and Dot blot hybridization. Strong correlation between NOS mRNA expression and inhibition of CT replication (correlation coefficient: $-$0.97, p $<$ 0.05) was observed. Anti-TNF-$\alpha$ antibody completely neutralized the biological activity of TNF-$\alpha$ secreted by LPS-treated RAW264.7 cells, yet the antibody neither reduced nitrite production nor restored CT replication. Combination of the antibody and L-NMMA significantly enhanced restoration of CT replication. In peritoneal macrophages, inhibition of CT replication induced by IFN-$\gamma$ was partially restored by L-NMMA or anti-TNF-$\alpha$ antibody. In McCoy cells, inhibition of CT replication induced by IFN-$\gamma$ and LPS was not significantly restored by L-NMMA. Great restoration of CT replication by 1 mM L-NMMA was observed in LPS-treated J774A.1 cells (31%), but not in IFN-$\gamma$-treated cells (5%). Our data indicate that (1) NO production is one of the mechanisms for inhibition of CT replication in IFN-$\gamma$-activated peritoneal macrophages and RAW264.7 cells; (2) NO plays a significant role in CT inhibition in LPS-treated macrophage cell lines, but not peritoneal macrophages; (3) TNF-$\alpha$ may be associated with inhibition, but the mechanism(s) may not involve NO production; (4) NO production may not be the mechanism for CT inhibition in McCoy cells treated with IFN-$\gamma$ and LPS.


Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites May 1991

Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites

Electronic Theses and Dissertations

Glycerophospholipids of mammalian cells exist as chemically diverse structures with various fatty acids at the sn-1 and sn-2 positions. Arachidonic acid, a polyunsaturated fatty acid, which may be converted to biologically active eicosanoids such as prostaglandins, thromboxanes, and leukotrienes, is found predominantly in the sn-2 position of glycerophospholipids. The purpose of this study was to examine, at the level of the individual molecular species, the incorporation of arachidonate into phospholipids and its release from phospholipids during stimulation. In this way, the specificity of the enzymes controlling arachidonate metabolism could be examined in order to clarify the processes that control the …