Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Single Cell Biophysics: Applications In Cardiomyocyte Mechanobiology And Stem Cell Mechanotransduction, Benjamin Edward Reese Dec 2014

Single Cell Biophysics: Applications In Cardiomyocyte Mechanobiology And Stem Cell Mechanotransduction, Benjamin Edward Reese

Doctoral Dissertations

While a great deal of work has been done to analyze cardiac dynamics and mechanics at the organ and tissue levels, there remains much less data regarding these metrics at the single cell level. Additionally, as fields such as regenerative medicine and tissue engineering are beginning to demonstrate greater therapeutic potential, the study and influence of stem cell mechanics on differentiation has become a major area of interest. For these reasons, along with the continued advancement of molecular techniques and assays, there is a growing need to develop functional assays that can integrate and bridge the findings from multiple length …


Unlocking The Secrets Of Multi-Flagellated Propulsion, Stefan Oma Nwandu-Vincent Dec 2014

Unlocking The Secrets Of Multi-Flagellated Propulsion, Stefan Oma Nwandu-Vincent

Doctoral Dissertations

In this work, unique high-speed imaging platforms and an array of theoretical analysis methods are used to thoroughly investigate eukaryotic multi-flagellated propulsion using Tritrichomonas foetus as a test case. Through experimental observations through our imaging system with superior resolution and capture rate exceeding that of previous studies, it was discovered for the first time that the T. foetus employs a strategy similar to that of the “run and tumble” strategies found in bacteria and Chlamydomonas; it has two distinct flagellar beating patterns that result in two different body swimming motions, linear and turning swimming.

These two flagella patterns were …


The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin Nov 2014

The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin

Doctoral Dissertations

Rapidly decreasing numbers of viable therapeutic leads in the pharmaceutical pipeline demand new, sustainable methods for improved drug discovery and development. Despite vast improvements in de novo drug design and target recognition, Nature remains the richest source of small molecule therapeutics. Among many natural products, polyketides are not only the most promising ones for developing new antibiotic leads, but also exhibit unusually high therapeutic value ranging from clinical use as anticancer, antiviral, and immunosuppressant drugs. Modular polyketide synthases (PKSs) are dedicated nano-machinery that can be manipulated to produce a structurally diverse library for drug discovery programs. The ability to manipulate …


Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman Oct 2014

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman

Doctoral Dissertations

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were …


Thermoelectric Elisa For Quantification Of 8ohdg In A Microfluidic Device, Gergana Nestorova Jul 2014

Thermoelectric Elisa For Quantification Of 8ohdg In A Microfluidic Device, Gergana Nestorova

Doctoral Dissertations

This research demonstrates the feasibility of a novel method for performing thermoelectric enzyme-linked immunosorbent assay (ELISA) in a microfluidic device. The feasibility of the thermoelectric ELISA is demonstrated by measuring the concentration of 8-hydroxy 2-deoxyguanosine (8OHdG) in urine samples from amyloid precursor protein (APP) transgenic mice. The detection method is based on formation of a complex between 8OHdG and anti-8OHdG capture antibody conjugated to biotin. The complex is immobilized over the measuring junctions of a thermopile via biotin streptavidin interaction. The concentration of the analyte is determined by using enzyme linked secondary IgG antibody specific to the primary one. The …


Engineering Bacterial Cellulose Scaffold And Its Biomimetic Composites For Bone And Cartilage Tissue Regeneration, Pelagie Marlene Favi May 2014

Engineering Bacterial Cellulose Scaffold And Its Biomimetic Composites For Bone And Cartilage Tissue Regeneration, Pelagie Marlene Favi

Doctoral Dissertations

A very promising approach to quickly and safely restore normal function to extensively damages and diseases bone and cartilage tissues is the regeneration of these injured tissues using an engineered support scaffold. This dissertation research focuses on the development and evaluation of native bacterial cellulose (BC) and chemically modified BCs as potential biomaterials for bone and cartilage regeneration using equine-derived bone marrow mesenchymal stem cells (EqMSCs).

The ability of native BC scaffold to maintain cell proliferation, viability, and in vitro differentiation of the seeded EqMSCs for application in bone and cartilage tissue engineering was studied. BC morphology was characterized using …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Dynamic Simulations And Data Mining Of Single-Leg Jump Landing: Implications For Anterior Cruciate Ligament Injury Prevention, Kristin Denise Morgan May 2014

Dynamic Simulations And Data Mining Of Single-Leg Jump Landing: Implications For Anterior Cruciate Ligament Injury Prevention, Kristin Denise Morgan

Doctoral Dissertations

It is estimated that 400,000 anterior cruciate ligament (ACL) injuries occur in the United States each year with the cost of ACL reconstruction surgery and rehabilitation exceeding $1 billion annually. The majority of ACL injuries are non-contact injuries occurring during cutting and jump landing movements. Because the majority of the injuries are non-contact injuries there is the potential to develop programs to reduce the risk of injury. Given our understanding of the joint kinematics and kinetics that place an individual at high risk for ACL, researchers have developed neuromuscular training programs that focus on improving muscle function in order to …


Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride May 2014

Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride

Doctoral Dissertations

This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients.

If …


Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White Apr 2014

Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White

Doctoral Dissertations

Hydrogels have attracted significant interest over the past several decades due to their outstanding versatility as biomaterials. Alginate-based hydrogels are among the most popular studied due to their low cost, biocompatibility, and tunable physical properties. However, as with all hydrogels, persistent oxygen solubility and poor mechanical strength limits their utility for creating macroscopic devices for biomedical use. This thesis presents two strategies for improving oxygen transport and mechanical properties of alginate-based hydrogel. The former involves incorporating perfluorocarbons, hydrophobic compounds with very high oxygen solubility, into the formulation. The perfluorocarbons are stabilized by nonionic surfactants, Pluronics®, and the emulsion is entrapped …