Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl Jul 2012

High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl

Chemical and Biological Engineering Publications

Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity 1. Several biodegradable polymers have been studied as vaccine delivery vehicles 1; in particular, polyanhydride particles have demonstrated the ability to provide sustained release of stable protein antigens and to activate antigen presenting cells and modulate immune responses 2-12. The molecular design of these vaccine carriers needs to integrate the rational selection of polymer properties as well as the incorporation of appropriate targeting agents ...


Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus Anthracis Protective Antigen, L. K. Petersen, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan Jan 2012

Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus Anthracis Protective Antigen, L. K. Petersen, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan

Chemical and Biological Engineering Publications

Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose ...