Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

A Systems Approach To Designing Next Generation Vaccines: Combining α-Galactose Modified Antigens With Nanoparticle Platforms, Yashdeep Phanse, Brenda Rocio Carrillo-Conde, Amanda Ellen Ramer-Tait, Scott Broderick, Chang Sun Kong, Krishna Rajan, Ramon Flick, Robert B. Mandell, Balaji Narasimhan, Michael J. Wannemuehler Jan 2014

A Systems Approach To Designing Next Generation Vaccines: Combining α-Galactose Modified Antigens With Nanoparticle Platforms, Yashdeep Phanse, Brenda Rocio Carrillo-Conde, Amanda Ellen Ramer-Tait, Scott Broderick, Chang Sun Kong, Krishna Rajan, Ramon Flick, Robert B. Mandell, Balaji Narasimhan, Michael J. Wannemuehler

Chemical and Biological Engineering Publications

Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4 + T cells was also enhanced compared to a traditional ...


Substrate Binding By The Catalytic Domain And Carbohydrate Binding Module Of Ruminococcus Flavefaciens Fd-1 Xyloglucanase/ Endoglucanase, Christopher D. Warner, Gulden Camci-Unal, Nicola L.B. Pohl, Clark Ford, Peter J. Reilly Jan 2013

Substrate Binding By The Catalytic Domain And Carbohydrate Binding Module Of Ruminococcus Flavefaciens Fd-1 Xyloglucanase/ Endoglucanase, Christopher D. Warner, Gulden Camci-Unal, Nicola L.B. Pohl, Clark Ford, Peter J. Reilly

Chemical and Biological Engineering Publications

Binding and thermodynamic properties of a carbohydrate binding module (CBM) and a glycoside hydrolase family 44 xyloglucanase/endoglucanase catalytic domain (CD) fromRuminococcus flavefaciens, both when separate and when linked to each other, have been quantified when binding various β-1,4-linked glucans and xylans. The three constructs bind cellotetraose, cellopentaose, and cellohexaose with association constants that increase with chain length. The CBM does not bind xylotetraose, xylopentaose, or xylohexaose. The CD appears to bind carboxymethylcellulose (CMC) and xylan only weakly, while the CBM and the CD/CBM bind them much more strongly than they bind the cellooligosaccharides. CMC is bound ...


Kinetic Characterization Of A Glycoside Hydrolase Family 44 Xyloglucanase/Endoglucanase From Ruminococcus Flavefaciens Fd-1, Christopher D. Warner, Rica M. Go, Carolina García-Salinas, Clark Ford, Peter J. Reilly Jan 2011

Kinetic Characterization Of A Glycoside Hydrolase Family 44 Xyloglucanase/Endoglucanase From Ruminococcus Flavefaciens Fd-1, Christopher D. Warner, Rica M. Go, Carolina García-Salinas, Clark Ford, Peter J. Reilly

Chemical and Biological Engineering Publications

Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with ...


Hybrid Thermochemical Processing: Fermentation Of Pyrolysis-Derived Bio-Oil, Laura R. Jarboe, Zhiyou Wen, Dong Won Choi, Robert C. Brown Jan 2011

Hybrid Thermochemical Processing: Fermentation Of Pyrolysis-Derived Bio-Oil, Laura R. Jarboe, Zhiyou Wen, Dong Won Choi, Robert C. Brown

Chemical and Biological Engineering Publications

Thermochemical processing of biomass by fast pyrolysis provides a nonenzymatic route for depolymerization of biomass into sugars that can be used for the biological production of fuels and chemicals. Fermentative utilization of this bio-oil faces two formidable challenges. First is the fact that most bio-oil-associated sugars are present in the anhydrous form. Metabolic engineering has enabled utilization of the main anhydrosugar, levoglucosan, in workhorse biocatalysts. The second challenge is the fact that bio-oil is rich in microbial inhibitors. Collection of bio-oil in distinct fractions, detoxification of bio-oil prior to fermentation, and increased robustness of the biocatalyst have all proven effective ...


Tertiary Structure And Characterization Of A Glycoside Hydrolase Family 44 Endoglucanase From Clostridium Acetobutylicum, Christopher D. Warner, Julie A. Hoy, Taran C. Shilling, Michael J. Linnen, Nathaniel D. Ginder, Clark Ford, Richard B. Honzatko, Peter J. Reilly Jan 2010

Tertiary Structure And Characterization Of A Glycoside Hydrolase Family 44 Endoglucanase From Clostridium Acetobutylicum, Christopher D. Warner, Julie A. Hoy, Taran C. Shilling, Michael J. Linnen, Nathaniel D. Ginder, Clark Ford, Richard B. Honzatko, Peter J. Reilly

Chemical and Biological Engineering Publications

A gene encoding a glycoside hydrolase family 44 (GH44) protein from Clostridium acetobutylicum ATCC 824 was synthesized and transformed into Escherichia coli.The previously uncharacterized protein was expressed with a C-terminal His tag and purified by nickel-nitrilotriacetic acid affinity chromatography. Crystallization and X-ray diffraction to a 2.2-Å resolution revealed a triose phosphate isomerase (TIM) barrel-like structure with additional Greek key and β-sandwich folds, similar to other GH44 crystal structures. The enzyme hydrolyzes cellotetraose and larger cellooligosaccharides, yielding an unbalanced product distribution, including some glucose. It attacks carboxymethylcellulose and xylan at approximately the same rates. Its activity on carboxymethylcellulose is ...


Utilizing Protein-Lean Coproducts From Corn Containing Recombinant Pharmaceutical Proteins For Ethanol Production, Ilankovan Paraman, Lorena Beatriz Moeller, M. Paul Scott, Kan Wang, Charles E. Glatz, Lawrence A. Johnson Jan 2010

Utilizing Protein-Lean Coproducts From Corn Containing Recombinant Pharmaceutical Proteins For Ethanol Production, Ilankovan Paraman, Lorena Beatriz Moeller, M. Paul Scott, Kan Wang, Charles E. Glatz, Lawrence A. Johnson

Chemical and Biological Engineering Publications

Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) andr-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich ...


Mechanisms Of Aqueous Extraction Of Soybean Oil, K. A. Campbell, Charles E. Glatz Nov 2009

Mechanisms Of Aqueous Extraction Of Soybean Oil, K. A. Campbell, Charles E. Glatz

Chemical and Biological Engineering Publications

Aqueous extraction processing (AEP) of soy is a promising green alternative to hexane extraction processing. To improve AEP oil yields, experiments were conducted to probe the mechanisms of oil release. Microscopy of extruded soy before and after extraction with and without protease indicated that unextracted oil is sequestered in an insoluble matrix of denatured protein and is released by proteolytic digestion of this matrix. In flour from flake, unextracted oil is contained as intact oil bodies in undisrupted cells, or as coalesced oil droplets too large to pass out of the disrupted cellular matrix. Our results suggest that emulsification is ...


Starch‐Binding Domain Shuffling In Aspergillus Niger Glucoamylase, Catherine A.G. Cornett, Tsuei-Yun Fang, Peter J. Reilly, Clark Ford Jan 2003

Starch‐Binding Domain Shuffling In Aspergillus Niger Glucoamylase, Catherine A.G. Cornett, Tsuei-Yun Fang, Peter J. Reilly, Clark Ford

Chemical and Biological Engineering Publications

Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N‐terminus, catalytic domain + linker + starch‐binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIΔL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII ≈ GAII ≈ GAI > RGAIΔL ≈ RGAI ≈ GAE. Insoluble starch hydrolysis rates were GAI > RGAIΔL > RGAI >> GAE ≈ RGAII > GAII, while insoluble starch ...


Replacement And Deletion Mutations In The Catalytic Domain And Belt Region Of Aspergillus Awamori Glucoamylase To Enhance Thermostability, Hsuan-Liang Liu, Yann Doleyres, Pedro M. Coutinho, Clark Ford, Peter J. Reilly Jan 2000

Replacement And Deletion Mutations In The Catalytic Domain And Belt Region Of Aspergillus Awamori Glucoamylase To Enhance Thermostability, Hsuan-Liang Liu, Yann Doleyres, Pedro M. Coutinho, Clark Ford, Peter J. Reilly

Chemical and Biological Engineering Publications

Three single-residue mutations, Asp71→Asn, Gln409→Pro and Gly447→Ser, two long-to-short loop replacement mutations, Gly23-Ala24-Asp25-Gly26-Ala27-Trp28-Val29-Ser30→Asn-Pro-Pro (23–30 replacement) and Asp297-Ser298-Glu299-Ala300-Val301→Ala-Gly-Ala (297–301 replacement) and one deletion mutation removing Glu439, Thr440 and Ser441 (Δ439–441), all based on amino acid sequence alignments, were made to improve Aspergillus awamori glucoamylase thermostability. The first and second single-residue mutations were designed to introduce a potential N-glycosylation site and to restrict backbone bond rotation, respectively, and therefore to decrease entropy during protein unfolding. The third single-residue mutation was made to decrease flexibility and increase O-glycosylation in the already highly O ...