Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Augmenting Structure/Function Relationship Analysis With Deep Learning For The Classification Of Psychoactive Drug Activity At Class A G Protein-Coupled Receptors, Hannah Willow Shows Jan 2021

Augmenting Structure/Function Relationship Analysis With Deep Learning For The Classification Of Psychoactive Drug Activity At Class A G Protein-Coupled Receptors, Hannah Willow Shows

Browse all Theses and Dissertations

G protein-coupled receptors (GPCRs) initiate intracellular signaling pathways via interaction with external stimuli. [1-5] Despite sharing similar structure and cellular mechanism, GPCRs participate in a uniquely broad range of physiological functions. [6] Due to the size and functional diversity of the GPCR family, these receptors are a major focus for pharmacological applications. [1,7] Current state-of-the-art pharmacology and toxicology research strategies rely on computational methods to efficiently design highly selective, low toxicity compounds. [9], [10] GPCR-targeting therapeutics are associated with low selectivity resulting in increased risk of adverse effects and toxicity. Psychoactive drugs that are active at Class A GPCRs used …


Acute Oxygen-Sensing By The Carotid Bodies : The Thermal Microdomain Model, Ryan Joseph Rakoczy Jan 2021

Acute Oxygen-Sensing By The Carotid Bodies : The Thermal Microdomain Model, Ryan Joseph Rakoczy

Browse all Theses and Dissertations

The carotid bodies (CB) are peripheral chemoreceptors that detect changes in arterial oxygenation and, via afferent inputs to the brainstem, correct the pattern of breathing to restore blood gas homeostasis. Elucidating the “signal” that couples carotid body sensory type I cell (CBSC) hypoxic mitochondrial inhibition with potassium channel closure has proven to be an arduous task; to date, a multitude of oxygen-sensing chemotransduction mechanisms have been described and altercated (Varas, Wyatt & Buckler, 2007; Gao et al, 2017; Rakoczy & Wyatt, 2018). Herein, we provide preliminary evidence supporting a novel oxygen-sensing hypothesis suggesting CBSC hypoxic chemotransductive signaling may in part …


Silk Hydrogels Incorporated With Melanin, Anne Lutz Jan 2021

Silk Hydrogels Incorporated With Melanin, Anne Lutz

Browse all Theses and Dissertations

Melanin is a naturally produced pigment found within the human body. Melanin is known for its ability to protect against Ultra Violet light, but also its ability to allow for mechanical protection. Making melanin a good addition to biomedical devices such as hydrogels. Silk hydrogels are weak in their load bearing capabilities but are known for their biocompatibility, biodegradability, and porosity. This makes the silk hydrogel a good material to incorporate melanin into in order to improve the mechanical properties. For the silk solution to form a solid, there must be a presence of both a catalyst and an oxidizer …


Multi-Label Classification On Locally-Linear Data: Application To Chemical Toxicity Prediction, Xiu Huan Yap Jan 2021

Multi-Label Classification On Locally-Linear Data: Application To Chemical Toxicity Prediction, Xiu Huan Yap

Browse all Theses and Dissertations

Computational models may assist in identification and prioritization of large chemical libraries. Recent experimental and data curation efforts, such as from the Tox21 consortium, have contributed towards toxicological datasets of increasing numbers of chemicals and toxicity endpoints, creating a golden opportunity for the exploration of multi-label learning and deep learning approaches in this thesis. Multi-label classification (MLC) methods may improve model predictivity by accounting for label dependence. However, current measures of label dependence, such as correlation coefficient, are inappropriate for datasets with extreme class imbalance, often seen in toxicological datasets. In this thesis, we propose a novel label dependence measure …


Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


Nmr Metabolomics For Optimizing Cell-Free Protein Synthesis, Angela M. Campo Jan 2021

Nmr Metabolomics For Optimizing Cell-Free Protein Synthesis, Angela M. Campo

Browse all Theses and Dissertations

Cell-Free Protein Synthesis (CFPS) has been utilized by biochemists to produce a variety of chemicals and therapeutics. While CFPS has spawned research in the biochemistry and medical communities, there are still unknown issues with interlaboratory variability with the technique. This work explored the black box nature of CFPS reactions by analyzing the CFPS reactions in situ with Nuclear Magnetic Resonance (NMR) spectroscopy. Aim 1 developed the protocol for conducting NMR experiments on E. coli cell-free reactions as well as a data analysis pipeline. This was accomplished with 1H NMR, capturing metabolite changes over time. The 1D NOESY experiment proved to …


Carbon Nanotube-Coated Scaffolds For Tissue Engineering Applications, Soham Dipakbhai Parikh Jan 2021

Carbon Nanotube-Coated Scaffolds For Tissue Engineering Applications, Soham Dipakbhai Parikh

Browse all Theses and Dissertations

Carbon Nanotubes (CNTs) have beneficial properties for cell scaffolding, which has translated into effective growth of bone, muscle, and cardiac cells. However, loose carbon nanotubes can cause in vivo toxicity. To reduce this risk, our team has developed biomimetic scaffolds with multiscale hierarchy where carpet-like CNT arrays are covalently bonded to larger biocompatible substrates. In this study, we have tested such scaffolds in two distinct types of biomedical applications involving glioblastoma and keratinocyte cells. The growth of glioblastoma (GBM) cells on our CNT-coated biomimetic scaffolds was evaluated to check their suitability as a potential chemotherapy-loaded implant for GBM patient treatment. …


Low Frequency Oscillations Of Hemodynamic Parameters As A Novel Diagnostic Measure For Traumatic Brain Injury, Andrea Gomez Carrillo Jan 2021

Low Frequency Oscillations Of Hemodynamic Parameters As A Novel Diagnostic Measure For Traumatic Brain Injury, Andrea Gomez Carrillo

Browse all Theses and Dissertations

There is a need to improve methods of monitoring patients with traumatic brain injury (TBI) in hospital settings. Current monitoring techniques and diagnosis methods are expensive, invasive, do not provide continuous measures, expose the patient to radiation, are ambiguous in the information they provide, and/or cannot be implemented at the bedside. These techniques measure imperative markers of brain function including intracranial pressure (ICP), cerebral blood flow (CBF), and oxygenation in the brain, among others. Hospitals not only require a practical method for real-time monitoring of patients at the bedside, but also meaningful metrics that characterize TBIs, since the variety of …


Modeling Of Excitation In Skeletal Muscle, Sabrina Kinzie Metzger Jan 2021

Modeling Of Excitation In Skeletal Muscle, Sabrina Kinzie Metzger

Browse all Theses and Dissertations

Recent experimental findings in the Rich lab suggest there are important gaps in our understanding of muscle excitability in various disease states. To generate and test hypotheses as well as to determine whether our current understanding of various aspects of muscle excitation can fully explain experimental findings, an accurate model of muscle excitation was needed. Previous studies have modeled excitation of muscle, but in each case, important aspects were omitted. One reason for this is that little effort has been made to accurately simulate muscle action potentials. In this thesis I present progress made towards generation of a model of …


Alterations In Cardiac Motions Of The Failing Heart During Direct Mechanical Ventricular Actuation, Benjamin Allyn Schmitt Jan 2021

Alterations In Cardiac Motions Of The Failing Heart During Direct Mechanical Ventricular Actuation, Benjamin Allyn Schmitt

Browse all Theses and Dissertations

Objectives: Heart failure (HF) refractory to medical management can be effectively treated with mechanical support. However, available devices are frequently associated with complications due to blood contact. Direct cardiac compression (DCC) devices augment LV systolic pump function by externally compressing the heart surface. Direct Mechanical Ventricular Actuation (DMVA) is a unique DCC method providing not only systolic but, importantly, diastolic support. However, DCC in general remains a relatively poorly understood modality. The purpose of this study was to examine DMVA’s effect on restoration of physiologic function in the failing heart. Methods: Global ischemic HF was induced with 5 mins of …


Augmenting Structure/Function Relationship Analysis With Deep Learning For The Classification Of Psychoactive Drug Activity At Class A G Protein-Coupled Receptors, Hannah Willow Shows Jan 2021

Augmenting Structure/Function Relationship Analysis With Deep Learning For The Classification Of Psychoactive Drug Activity At Class A G Protein-Coupled Receptors, Hannah Willow Shows

Browse all Theses and Dissertations

G protein-coupled receptors (GPCRs) initiate intracellular signaling pathways via interaction with external stimuli. [1-5] Despite sharing similar structure and cellular mechanism, GPCRs participate in a uniquely broad range of physiological functions. [6] Due to the size and functional diversity of the GPCR family, these receptors are a major focus for pharmacological applications. [1,7] Current state-of-the-art pharmacology and toxicology research strategies rely on computational methods to efficiently design highly selective, low toxicity compounds. [9], [10] GPCR-targeting therapeutics are associated with low selectivity resulting in increased risk of adverse effects and toxicity. Psychoactive drugs that are active at Class A GPCRs used …


Als-Induced Excitability Changes In Individual Motorneurons And The Spinal Motorneuron Network In Sod1-G93a Mice At Symptom Onset, Christiana S.I. Draper Jan 2021

Als-Induced Excitability Changes In Individual Motorneurons And The Spinal Motorneuron Network In Sod1-G93a Mice At Symptom Onset, Christiana S.I. Draper

Browse all Theses and Dissertations

Amyotrophic lateral sclerosis (ALS) is the most common motorneuron (MN) disease in adulthood. ALS is hallmarked by the progressive loss of MNs in the brain, brainstem, and spinal cord. Many hypotheses to explain the pathogenesis of ALS have been explored, but the exact mechanisms underlying the development of this disease remain unknown. However, abnormalities in MN excitability and glutamate excitotoxicity are the most widely studied. For decades, researchers have examined MN excitability in ALS, but the current literature is inconsistent, showing evidence of hyperexcitability, hypoexcitability, or no change in excitability of MNs in ALS. Many of these studies also focus …


Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


The Regulation Of Small Gtpase Rac1 Phosphorylation, Activation And Subcellular Localization By Δnp63Α, Amjad Ahmed Aljagthmi Jan 2021

The Regulation Of Small Gtpase Rac1 Phosphorylation, Activation And Subcellular Localization By Δnp63Α, Amjad Ahmed Aljagthmi

Browse all Theses and Dissertations

ΔNp63α, a member of the p53 family of transcription factors, plays a critical role in normal development and human disease. Loss of ΔNp63α expression is associated with increased cancer invasiveness and metastasis. The small GTPase Rac1 is a master regulator of cell motility, and increased Rac1 activity upregulates cell invasion in multiple human cancers. Increased cancer cell invasion associated with ΔNp63α knockdown and Rac1 activation suggests a novel mechanism by which ΔNp63α regulates tumor invasiveness through Rac1. Accordingly, we sought to delineate the effects of ΔNp63α on Rac1 phosphorylation, activation and subcellular localization. We identified a novel ΔNp63α/miR-320a/PKCᵧ signaling pathway …