Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioelectrics Publications

Apoptosis

Biochemistry, Biophysics, and Structural Biology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Nanoelectropulse-Driven Membrane Perturbation And Small Molecule Permeabilization, P. Thomas Vernier, Yinghua Sun, Martin A. Gundersen Jan 2006

Nanoelectropulse-Driven Membrane Perturbation And Small Molecule Permeabilization, P. Thomas Vernier, Yinghua Sun, Martin A. Gundersen

Bioelectrics Publications

Background
Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization.

Results
In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to …


Energy-Landscape-Model Analysis For Irreversibility And Its Pulse-Width Dependence In Cells Subjected To A High-Intensity Ultrashort Electric Pulse, R. P. Joshi, Q. Hu, Karl H. Schoenbach, Stephen J. Beebe Jul 2004

Energy-Landscape-Model Analysis For Irreversibility And Its Pulse-Width Dependence In Cells Subjected To A High-Intensity Ultrashort Electric Pulse, R. P. Joshi, Q. Hu, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

We provide a simple, but physical analysis for cell irreversibility and apoptosis in response to an ultrashort (nanosecond), high-intensity electric pulse. Our approach is based on an energy landscape model for determining the temporal evolution of the configurational probability function p(q). The primary focus is on obtaining qualitative predictions of a pulse width dependence to apoptotic cell irreversibility that has been observed experimentally. The analysis couples a distributed electrical model for current flow with the Smoluchowski equation to provide self-consistent, time-dependent transmembrane voltages. The model captures the essence of the experimentally observed pulse-width dependence, and provides a possible physical picture …