Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioelectrics Publications

Diseases

Melanoma

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller Nov 2022

Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller

Bioelectrics Publications

Resistance to checkpoint-blockade treatments is a challenge in the clinic. Both primary and acquired resistance have become major obstacles, greatly limiting the long-lasting effects and wide application of blockade therapy. Many patients with metastatic melanoma eventually require further therapy. The absence of T-cell infiltration to the tumor site is a well-accepted contributor limiting immune checkpoint inhibitor efficacy. In this study, we combined intratumoral injection of plasmid IL-12 with electrotransfer and anti-PD-1 in metastatic B16F10 melanoma tumor model to increase tumor-infiltrating lymphocytes and improve therapeutic efficacy. We showed that effective anti-tumor responses required a subset of tumor-infiltrating CD8+ and CD4 …


Thermal Analysis Of Infrared Irradiation-Assisted Nanosecond-Pulsed Tumor Ablation, James Hornef, Chelsea M. Edelblute, Karl H. Schoenbach, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2020

Thermal Analysis Of Infrared Irradiation-Assisted Nanosecond-Pulsed Tumor Ablation, James Hornef, Chelsea M. Edelblute, Karl H. Schoenbach, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond Pulsed Electric Fields (nsPEF) have the potential to treat a variety of cancer types including melanoma, pancreatic and lung squamous cancers. Recent studies show that nsPEF-based cancer therapy may be improved further with the assistance of moderate heating of the target. A feedbacklooped heating system, utilizing a 980-nm fiber optic laser, was integrated into nsPEF electrodes for tumor ablation. The laser beam profile was determined to be Gaussian using a knife-edge technique. Thermal properties of the biological target were evaluated based on the treatment area, penetration depth and thermal distribution due to laser irradiation with or without nsPEF. Synergistic …