Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Cardiac Modelling Techniques To Predict Future Heart Function And New Biomarkers In Acute Myocardial Infarction, Sergio C. H. Dempsey Jun 2020

Cardiac Modelling Techniques To Predict Future Heart Function And New Biomarkers In Acute Myocardial Infarction, Sergio C. H. Dempsey

Electronic Thesis and Dissertation Repository

Fundamental to treatment planning for patients that have suffered myocardial infarction are predictive biomarkers and risk factors. Important among these in terms of a patient’s treatment plan or prognosis are the contractility of the damaged myofibers, final infarct volume, and poor infarct healing rate. Proposed and developed in this thesis are techniques to predict these biomarkers and risk factors using cardiac biomechanical modelling. One of the developed techniques was a CT compatible shape optimization technique which can predict the contraction force of healthy, and stunned myofibers within 6.3% and the distribution of potentially necrotic myofibers within 10% accuracy. The second …


A Biomechanical Approach For Real-Time Tracking Of Lung Tumors During External Beam Radiation Therapy (Ebrt), Elham Karami Aug 2017

A Biomechanical Approach For Real-Time Tracking Of Lung Tumors During External Beam Radiation Therapy (Ebrt), Elham Karami

Electronic Thesis and Dissertation Repository

Lung cancer is the most common cause of cancer related death in both men and women. Radiation therapy is widely used for lung cancer treatment. However, this method can be challenging due to respiratory motion. Motion modeling is a popular method for respiratory motion compensation, while biomechanics-based motion models are believed to be more robust and accurate as they are based on the physics of motion. In this study, we aim to develop a biomechanics-based lung tumor tracking algorithm which can be used during External Beam Radiation Therapy (EBRT). An accelerated lung biomechanical model can be used during EBRT only …


Characterization And Assessment Of Mechanical Properties Of Adipose Derived Breast Tissue Scaffolds As A Means For Breast Reconstructive Purposes, Ehsan Omidi Aug 2014

Characterization And Assessment Of Mechanical Properties Of Adipose Derived Breast Tissue Scaffolds As A Means For Breast Reconstructive Purposes, Ehsan Omidi

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) has shown great potential for use as a regenerative scaffold in breast reconstruction following mastectomies or lumpectomies. Mechanical properties of such scaffolds are of great importance in order to mimic natural adipose tissue. This study focuses on the characterization of mechanical properties and assessment of DAT scaffolds for implantation into a human breast. DAT samples sourced from multiple adipose tissue depots within the body were tested and their elastic and hyperelastic parameters were obtained. Subsequently simulations were conducted where the calculated hyperelastic parameters were tested as a real human breast model under two different gravity loading …


Modeling Lung Tissue Motions And Deformations: Applications In Tumor Ablative Procedures, Ali Sadeghi Naini May 2011

Modeling Lung Tissue Motions And Deformations: Applications In Tumor Ablative Procedures, Ali Sadeghi Naini

Electronic Thesis and Dissertation Repository

Various types of motion and deformation that the lung undergoes during minimally invasive tumor ablative procedures have been investigated and modeled in this dissertation. The lung frequently undergoes continuous large respiratory deformation, which can greatly affect the pre-planned outcome of the operation, hence deformation compensation becomes necessary. The first type of major deformation involved in a target lung throughout a tumor ablative procedure is the one encountered in procedures where the lung is totally deflated before starting the operation. A consequence of this deflation is that pre-operative images (acquired while the lung was partially inflated) become inaccurate for targeting the …