Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones Aug 2018

Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones

Biological Engineering Faculty Publications

Although synthetic spider silk has impressive potential as a biomaterial, endotoxin contamination of the spider silk proteins is a concern, regardless of the production method. The purpose of this research was to establish a standardized method to either remove or destroy the endotoxins present in synthetic spider silk proteins, such that the endotoxin level was consistently equal to or less than 0.25 EU/mL, the FDA limit for similar implant materials. Although dry heat is generally the preferred method for endotoxin destruction, heating the silk proteins to the necessary temperatures led to compromised mechanical properties in the resultant materials. In light …


Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris Aug 2018

Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silks are incredible natural materials that possess desirable combinations of strength, elasticity, weight, and robustness. Other properties such as biocompatibility and biodegradability further increase the worth of these materials. The possibility of farming spiders is impractical due to spiders’ natural behaviors. Modern biotechnologies have allowed for recombinant spider silk proteins (rSSps) to be produced without the use of spiders. However, the features responsible for spider silks impressive properties can cause difficulties with producing silk materials. A recently developed water-based and biomimetic solvation method has provided a solution to such difficulties and has also led to novel silk biomaterials. Most …


Novel Methods To Produce Large Recombinant Spider Silk Proteins Via Polymerization, Nathan L. Hebert Aug 2018

Novel Methods To Produce Large Recombinant Spider Silk Proteins Via Polymerization, Nathan L. Hebert

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silk has long been a subject of scientific research due to its remarkable mechanical properties. Until recently, there has been no way to effectively obtain spider silk except by harvesting it from individual spiders. With advances in technology, the genes that code for the individual spider silk proteins have been isolated and genetically engineered into other hosts to produce recombinant spider silk proteins (rSSp) of varying sizes, Larger rSSp have correspondingly greater mechanical properties in any resulting materials. Using current production methods, larger rSSp cannot be produced in commercially viable quantities while simultaneously being economically viable. The current production …