Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Molecular, Cellular, and Tissue Engineering

Autotropism

Articles 1 - 1 of 1

Full-Text Articles in Biomedical Engineering and Bioengineering

Brassinosteroids Inhibit Autotropic Root Straightening By Modifying Filamentous-Actin Organization And Dynamics, Louise De Bang, Ana Paez-Garcia, Ashley E. Cannon, Sabrina Chin, Jaydeep Kolape, Fuqi Liao, J. Alan Sparks, Qingzhen Jiang, Elison B. Blancaflor Jan 2020

Brassinosteroids Inhibit Autotropic Root Straightening By Modifying Filamentous-Actin Organization And Dynamics, Louise De Bang, Ana Paez-Garcia, Ashley E. Cannon, Sabrina Chin, Jaydeep Kolape, Fuqi Liao, J. Alan Sparks, Qingzhen Jiang, Elison B. Blancaflor

Nebraska Center for Biotechnology: Faculty and Staff Publications

When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls …