Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Molecular, Cellular, and Tissue Engineering

Alzheimer’s disease (AD); amyloid beta (Aβ); europium-doped cerium oxide nanoparticles (EuCeO2NPs); microglia; BV2 cells and immune modulation

Articles 1 - 1 of 1

Full-Text Articles in Biomedical Engineering and Bioengineering

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya Apr 2022

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs …