Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt Jun 2022

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt

Nebraska Center for Biotechnology: Faculty and Staff Publications

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of …


Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya Apr 2022

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs …


Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang Jan 2022

Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang

Nebraska Center for Biotechnology: Faculty and Staff Publications

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stemtranscriptome revealed that wounding concurrently activates phytohormones signaling, …


Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty Jan 2022

Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty

Nebraska Center for Biotechnology: Faculty and Staff Publications

Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment- naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification …


The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al. Jan 2022

The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al.

Nebraska Center for Biotechnology: Faculty and Staff Publications

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.