Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs Dec 2017

A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs

Electronic Theses and Dissertations

Medical device failure and misuse have the potential to cause serious injury and death. Given the intricate nature of the instruments utilized specifically in minimally invasive surgery (MIS), users and manufacturers of surgical devices share a responsibility in preventing user error and device failure. A novel approach was presented for the evaluation of minimally invasive device failures, which involved assessing the severity of adverse event outcomes associated with the failures modes and investigating aspects of the devices’ design that may contribute to failure. The goals of this research were to 1) characterize the design attributes, failure modes, and adverse events …


Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran Dec 2017

Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran

Electronic Theses and Dissertations

Pulmonary and cardiovascular dysfunction are consistently reported as the leading causes of morbidity and mortality among the 1,275,000 people who are living with chronic spinal cord injury (SCI) in the United States. Respiratory-cardiovascular complications from neurological disorders (primarily COPD and sleep apnea) are currently the number one cause of death and disability in the US.

The main goal of this project is to develop an inspiratory-expiratory training device for use in the rehabilitation of patients with respiratory motor and cardiovascular deficits that incorporates existing technologies and promotes successful training methodologies performed at the clinic and at home.

An embedded microprocessor …


Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne Aug 2017

Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne

Electronic Theses and Dissertations

Based on the principles of cutting edge bone remodeling research, a unique therapeutic exercise device was designed specifically to improve bone quality at the most critical location of the proximal femur prone to fracture: the superior-lateral femoral neck where the fracture first initiates during a fall. The exercise/device is intended to work by inducing enough strain in the bone to stimulate the body’s natural bone remodeling mechanisms to increase bone density in the proximal femur and consequently prevent a fracture from arising if a fall to the side does occur.

In order to test the proposed exercise, experiments simulating the …


Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents Aug 2017

Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents

Electronic Theses and Dissertations

The purpose of this work is to reduce the operative time and blood loss incurred during open reduction and internal fixation (ORIF) of traumatic pelvic injuries through the creation of patient specific bending templates for reconstruction plates. These templates are 3D printed in a resin capable of being sterilized and taken into the operating room so that bending may be performed by the surgeon before the patient is opened or by another team member in parallel with the surgeon.

A novel software extension was created in 3D modeling software to allow a surgeon to individually position screws on a pelvic …


Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron May 2017

Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron

Electronic Theses and Dissertations

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the …


Examining The Effects Of Macrophage Populations On Cancerous Tumor Growth., Grace E. Mahlbacher May 2017

Examining The Effects Of Macrophage Populations On Cancerous Tumor Growth., Grace E. Mahlbacher

Electronic Theses and Dissertations

The most abundant immune cell types of the tumor microenvironment macrophages recruited there by tumor-eluted factors. The role of these immune cells in tumor progression, and the interplay between tumor and immune cells is an emerging field of research with potential for novel treatment strategies. Here, a TIE2 expressing macrophage (TEM) subtype is integrated into a virtual tumor model. Within the 2D microenvironment, the TEM will differentiate from an extravasated monocyte precursor, congregate around the abluminal side of the vasculature in response to a chemoattractant gradient, secrete cytokines which favor differentiation of a separate angiogenic macrophage subtype [1]. The effects …


A Novel Mra-Based Framework For The Detection Of Changes In Cerebrovascular Blood Pressure., Yitzhak Atakilt Gebru May 2017

A Novel Mra-Based Framework For The Detection Of Changes In Cerebrovascular Blood Pressure., Yitzhak Atakilt Gebru

Electronic Theses and Dissertations

Background: High blood pressure (HBP) affects 75 million adults and is the primary or contributing cause of mortality in 410,000 adults each year in the United States. Chronic HBP leads to cerebrovascular changes and is a significant contributor for strokes, dementia, and cognitive impairment. Non-invasive measurement of changes in cerebral vasculature and blood pressure (BP) may enable physicians to optimally treat HBP patients. This manuscript describes a method to non-invasively quantify changes in cerebral vasculature and BP using Magnetic Resonance Angiography (MRA) imaging.

Methods: MRA images and BP measurements were obtained from patients (n=15, M=8, F=7, Age= 49.2 …


Development Of A Directional Bone Reaming System., Richard J Ackermann May 2017

Development Of A Directional Bone Reaming System., Richard J Ackermann

Electronic Theses and Dissertations

Preparation of long bones such as the femur or tibia for placement of intramedullary devices for the treatment of fractures usually involves reaming with a series of central cutters driven by a drill-like device with a flexible shaft over a guide wire. The reamers sequentially enlarge the intramedullary canal into a tunnel of circular cross-section and a diameter appropriate for the procedure. The current technology is concentric, meaning that the system is self-centering within the original intramedullary canal and the expansion is symmetric with respect to the original centerline. A novel system for laterally deflecting the head of a 12mm …