Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Denver

Cementless

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Relative Contribution Of Fixation Features, Activity, And Tibiofemoral Conformity On Initial Stability Of Cementless Tibial Trays, James Sullivan Deacy Jan 2019

The Relative Contribution Of Fixation Features, Activity, And Tibiofemoral Conformity On Initial Stability Of Cementless Tibial Trays, James Sullivan Deacy

Electronic Theses and Dissertations

Initial stability of cementless total knee replacements (TKR) is critical to implant success as excessive motion between the bone and implant prevents bony ingrowth that is critical to the long-term survivability of cementless implants. Prior studies have shown that excessive micromotion causes fibrous tissue growth instead of beneficial bony growth. There are many factors that influence initial stability including the design of the tibial tray and the tibiofemoral articulations. Understanding the impacts of these design features on micromotion between the bone and implants is crucial to improving the performance of cementless TKR. Prior studies only tested for the effect of …


Cementless Tibial Base Micromotion During Activities Of Daily Living, Hayden Wilson Jan 2018

Cementless Tibial Base Micromotion During Activities Of Daily Living, Hayden Wilson

Electronic Theses and Dissertations

Initial stability of cementless total knee replacement (TKR) components is directly related to long-term fixation and success, as excess motion hinders bony ingrowth. To assess implant stability, there is a need for more physiologically accurate loading conditions, incorporating forces and displacements in all 6 degrees-of-freedom found in the knee joint, as well as understanding the impact of femoral flexion on conformity of tibiofemoral articulation. Understanding how different activities of daily living generate tibial micromotion yields insight into surgical technique considerations, and rehabilitation strategies post-operatively. ASTM F3141-15, which specifies knee flexion, Internal-External moment, Medial-Lateral, Anterior-Posterior and Superior-Inferior forces during gait and …