Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li Aug 2017

The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Schwann cells are glial cells that serve the vital role of supporting neurons in the peripheral nervous system. While their primary function is to provide insulation (myelin) for axons, they also help regenerate injured axons by digesting severed axons and providing scaffolding to guide the regeneration process. This specific role of Schwann cells makes them highly important cellular targets following nerve injury. Although some efforts have been made to encourage Schwann cell migration after nerve damage, the use of electric fields to control cell responses remain unexplored; therefore, this experiment serves to characterize the behavior of Schwann cells to weak …


Co-Modulation Masking Release Begins In The Auditory Periphery, Kareem R. Hussein, Agudemu Borjigan, Mark Sayles Aug 2017

Co-Modulation Masking Release Begins In The Auditory Periphery, Kareem R. Hussein, Agudemu Borjigan, Mark Sayles

The Summer Undergraduate Research Fellowship (SURF) Symposium

Understanding speech in noisy environments can be difficult, especially for people with hearing loss. The background noise can cover up the sounds of interest. Normally, the auditory system works to alleviate this problem by tagging and then cancelling the noise. Our experiments are aimed at understanding the mechanism of this noise cancellation process. We hypothesize that non-linear signal processing in the mammalian cochlea (the most peripheral part of the auditory system) is the basis of noise cancellation. To test this hypothesis, we measured the responses of auditory-nerve fibers (ANFs) to sounds embedded in background noise with different statistical properties. ANFs …


A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem Aug 2017

A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

In excitatory neurons, the ability of a synaptic connection to strengthen or weaken is known as synaptic plasticity and is thought to be the cellular basis for learning and memory. Understanding the mechanism of synaptic plasticity is an important step towards understanding and developing treatment methods for learning and memory disorders. A key molecular process in synaptic plasticity for mammalian glutamatergic neurons is the exocytosis (delivery to the synapse) of AMPA-type glutamate receptors (AMPARs). While the protein signaling pathways responsible for exocytosis have long been investigated with experimental methods, it remains unreasonable to study the system in its full complexity …


Modeling Accommodation Control Of The Human Eye: Chromatic Aberration And Color Opponency, Agostino Gibaldi, Steven A. Cholewiak, Marty S. Banks May 2017

Modeling Accommodation Control Of The Human Eye: Chromatic Aberration And Color Opponency, Agostino Gibaldi, Steven A. Cholewiak, Marty S. Banks

MODVIS Workshop

Accommodation is the process by which the eye lens changes optical power to maintain a clear retinal image as the distance to the fixated object varies. Although luminance blur has long been considered the driving feature for accommodation, it is by definition unsigned (i.e., there is no difference between the defocus of an object closer or farther than the focus distance). Nonetheless, the visual system initially accommodates in the correct direction, implying that it exploits a cue with sign information. Here, we present a model of accommodation control based on such a cue: Longitudinal Chromatic Aberration (LCA). The model relies …


Heuristics From Statistics—Modeling The Behavior And Perception Of Non-Rigid Materials, Vivian C. Paulun, Roland W. Fleming May 2017

Heuristics From Statistics—Modeling The Behavior And Perception Of Non-Rigid Materials, Vivian C. Paulun, Roland W. Fleming

MODVIS Workshop

No abstract provided.


Modelling Grip Point Selection In Human Precision Grip, Guido Maiello, Lina Klein, Vivian C. Paulun, Roland W. Fleming May 2017

Modelling Grip Point Selection In Human Precision Grip, Guido Maiello, Lina Klein, Vivian C. Paulun, Roland W. Fleming

MODVIS Workshop

No abstract provided.