Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur Jul 2014

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur

Electrical & Computer Engineering Theses & Dissertations

A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user's intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully used …


Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu Jul 2014

Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu

Electrical & Computer Engineering Theses & Dissertations

This dissertation focuses on the dynamics and bioeffects of electroporation of biological cell and ionic conduction in nanopores under high-intensity, nanosecond pulses. The electroporation model utilized the current continuity equation and the asymptotic Smoluchowski equation to explore the transmembrane potential and pore density of the plasma and intracellular membranes; the ionic conduction model employed the Poisson-Nernst-Planck equations and the Navier-Stokes equations to analyze the ionic current and ion concentration profile.

Nanosecond electric pulses of high-intensity amplitude can initiate electroporation of intracellular organelles. The pulse parameters and cell electrical properties, that can selectively electroporate liposomes but keep the plasma and nuclear …


Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann Jul 2014

Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann

Mechanical & Aerospace Engineering Theses & Dissertations

The anterior cruciate ligament (ACL) provides stability to the knee joint while performing activities such as a side step cut. Neuromuscular fatigue, a reduction in muscle force producing capabilities, alters lower extremity mechanics while performing a side step cut and may increase the risk of ACL injury, particularly in females. Musculoskeletal modeling allows for the measurement of muscle forces, which are difficult to measure in-vivo. Therefore, musculoskeletal modeling, may improve our understanding of the effects of neuromuscular fatigue on muscle force production and loading of the ACL. Therefore, the purpose of this study was to develop a musculoskeletal model which …