Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi Jan 2020

Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi

Doctoral Dissertations

“Cervical cancer is the fourth most frequent cancer that affects women worldwide. Assessment of cervical intraepithelial neoplasia (CIN) through histopathology remains as the standard for absolute determination of cancer. The examination of tissue samples under a microscope requires considerable time and effort from expert pathologists. There is a need to design an automated tool to assist pathologists for digitized histology slide analysis. Pre-cervical cancer is generally determined by examining the CIN which is the growth of atypical cells from the basement membrane (bottom) to the top of the epithelium. It has four grades, including: Normal, CIN1, CIN2, and CIN3. In …


Cervical Cancer Histology Image Feature Extraction And Classification, Peng Guo Jan 2014

Cervical Cancer Histology Image Feature Extraction And Classification, Peng Guo

Masters Theses

"Cervical cancer, the second most common cancer affecting women worldwide and the most common in developing countries can be cured if detected early and treated. Expert pathologists routinely visually examine histology slides for cervix tissue abnormality assessment. In previous research, an automated, localized, fusion-based approach was investigated for classifying squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on image analysis of 62 digitized histology images obtained through the National Library of Medicine. In this research, CIN grade assessments from two pathologists are analyzed and are used to facilitate atypical cell concentration feature development …