Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Non-Antibiotic Antimicrobial Polydopamine Surface Coating To Prevent Stable Biofilm Formation On Satellite Telemetry Tags Used In Cetacean Conservation Applications, Ariana Smies, Jeremy Wales, Maureen Hennenfent, Laura Lyons, Caleigh R. Dunn, Jooke Robbins, Bruce Lee, Alexandre Zerbini, Rupak Rajachar Oct 2022

Non-Antibiotic Antimicrobial Polydopamine Surface Coating To Prevent Stable Biofilm Formation On Satellite Telemetry Tags Used In Cetacean Conservation Applications, Ariana Smies, Jeremy Wales, Maureen Hennenfent, Laura Lyons, Caleigh R. Dunn, Jooke Robbins, Bruce Lee, Alexandre Zerbini, Rupak Rajachar

Michigan Tech Publications

Satellite telemetry tags, used to monitor the migratory behavior of cetaceans, have the potential to be a vehicle for infection due to their invasive nature. Antibiotic coatings have been previously employed to reduce the chances of infection via the formation of a stable biofilm on the surface of the tags. However, increased use of antibiotics has the potential to lead to the development of antibiotic-resistant pathogens. To prevent the formation of antibiotic-resistant pathogens, a polydopamine surface coating that, when exposed to oxygen, releases low doses ( ~ 40-100 µ M ) of hydrogen peroxide over a prolonged period ( > 24 …


Electrochemical Behaviour And Direct Cell Viability Analysis Of Hybrid Implants Made Of Ti-6al-4v Lattices Infiltrated With A Bioabsorbable Zn-Based Alloy, Noa Gabay Bass, Galit Katarivas Levy, Tomer Ron, Razi Vago, Jeremy Goldman, Amnon Shirizly, Eli Aghion Oct 2022

Electrochemical Behaviour And Direct Cell Viability Analysis Of Hybrid Implants Made Of Ti-6al-4v Lattices Infiltrated With A Bioabsorbable Zn-Based Alloy, Noa Gabay Bass, Galit Katarivas Levy, Tomer Ron, Razi Vago, Jeremy Goldman, Amnon Shirizly, Eli Aghion

Michigan Tech Publications

Biodegradable metals are being developed for biomedical implants or components of implants. Biodegradable zinc-based materials, in particular, have been shown to promote bone regeneration in orthopaedic applications. Here, we investigated the potential of a hybrid Ti-Zn system, comprising a Ti-6Al-4V biostable lattice produced by additive manufacturing (AM) infiltrated by a bioabsorbable Zn-2%Fe alloy, to serve as an osseointegrated implant for dental and orthopaedic applications. The osseointegration of implants can be enhanced by a porous implant structure that facilitates bone ingrowth to achieve superior bonding between the bone tissue and the implant. The hybrid material was evaluated in terms of microstructure …


Thermomagnetic-Responsive Self-Folding Microgrippers For Improving Minimally Invasive Surgical Techniques And Biopsies, Caleigh R. Dunn, Bruce Lee, Rupak Rajachar Aug 2022

Thermomagnetic-Responsive Self-Folding Microgrippers For Improving Minimally Invasive Surgical Techniques And Biopsies, Caleigh R. Dunn, Bruce Lee, Rupak Rajachar

Michigan Tech Publications

Traditional open surgery complications are typically due to trauma caused by accessing the procedural site rather than the procedure itself. Minimally invasive surgery allows for fewer complications as microdevices operate through small incisions or natural orifices. However, current minimally invasive tools typically have restricted maneuverability, accessibility, and positional control of microdevices. Thermomagnetic-responsive microgrippers are microscopic multi-fingered devices that respond to temperature changes due to the presence of thermal-responsive polymers. Polymeric devices, made of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) and polypropylene fumarate (PPF), self-fold due to swelling and contracting of the hydrogel layer. In comparison, soft metallic devices feature a pre-stressed metal bilayer …


Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Keratinocyte Cell Migration Due To Contact Exposure, Manas Warke, Laura De March, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao Jul 2022

Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Keratinocyte Cell Migration Due To Contact Exposure, Manas Warke, Laura De March, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao

Michigan Tech Research Data

The scratch wound assay was performed on Human immortalized keratinocytes (HaCaT) cells to observe the effect on cell migration due to contact exposure to arsenic-contaminated Immokalee soil. The cell migration was observed through a microscope for 72 h. HaCaT cells were seeded in 48-well plate. On day 3, treatment media was added (n=8). The cells were treated with four concentrations of soil As (45, 225, 450, and 900 mg/kg) and two controls - Negative control (NC; Pure media) and control (C; 0 mg/kg soil As) for 72 h. A scratch was made using a pipette tip. The wound healing was …


Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Dermal Fibroblasts Cell Migration Due To Contact Exposure, Manas Warke, Laura De Marchi, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao Jul 2022

Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Dermal Fibroblasts Cell Migration Due To Contact Exposure, Manas Warke, Laura De Marchi, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao

Michigan Tech Research Data

The scratch wound assay was performed on Normal Human Primary Dermal Fibroblasts (HDFa) cells to observe the effect on cell migration due to contact exposure to arsenic-contaminated Immokalee soil. The cell migration was observed through a microscope for 72 h. HDFa cells were seeded in 48-well plate. On day 3, treatment media was added (n=8). The cells were treated with four concentrations of soil As (45, 225, 450, and 900 mg/kg) and two controls - Negative control (NC; Pure media) and control (C; 0 mg/kg soil As) for 72 h. A scratch was made using a pipette tip. The wound …


Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal Jun 2022

Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal

Michigan Tech Publications

Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the development of next-generation antimicrobials. The rapid emergence of multi-drug resistant microbes, superbugs and mutated strains of viruses have fueled the search for new and alternate antimicrobial agents with broad-spectrum biocidal activity. Biomaterials, ranging from macroscopic polymers, proteins, and peptides to nanoscale materials such as nanoparticles, nanotubes and nanosheets have emerged as effective antimicrobials. An extensive body of research has established the antibacterial and antiviral efficiencies of different types of biomaterials. …


Comparison Of Performance Of Self-Expanding And Balloon-Expandable Transcatheter Aortic Valves, Hoda Hatoum, Milad Samaee, Janarthanan Sathananthan, Stephanie Sellers, Maximilian Kuetting, Scott M. Lilly, Abdul R. Ihdayhid, Philipp Blanke, Jonathon Leipsic, Vinod H. Thourani, Lakshmi Prasad Dasi Jun 2022

Comparison Of Performance Of Self-Expanding And Balloon-Expandable Transcatheter Aortic Valves, Hoda Hatoum, Milad Samaee, Janarthanan Sathananthan, Stephanie Sellers, Maximilian Kuetting, Scott M. Lilly, Abdul R. Ihdayhid, Philipp Blanke, Jonathon Leipsic, Vinod H. Thourani, Lakshmi Prasad Dasi

Michigan Tech Publications

Objective: To evaluate the flow dynamics of self-expanding and balloon-expandable transcatheter aortic valves pertaining to turbulence and pressure recovery. Transcatheter aortic valves are characterized by different designs that have different valve performance and outcomes. Methods: Assessment of transcatheter aortic valves was performed using self-expanding devices (26-mm Evolut [Medtronic], 23-mm Allegra [New Valve Technologies], and small Acurate neo [Boston Scientific]) and a balloon-expandable device (23-mm Sapien 3 [Edwards Lifesciences]). Particle image velocimetry assessed the flow downstream. A Millar catheter was used for pressure recovery calculation. Velocity, Reynolds shear stresses, viscous shear stress, and pressure gradients were calculated. Results: The maximal velocity …


Overcoming Supply Disruptions During Pandemics By Utilizing Found Hardware For Open Source Gentle Ventilation, S. Oberloier, N. Gallup, J. M. Pearce Apr 2022

Overcoming Supply Disruptions During Pandemics By Utilizing Found Hardware For Open Source Gentle Ventilation, S. Oberloier, N. Gallup, J. M. Pearce

Michigan Tech Publications

This article details the design of an open source emergency gentle ventilator (gentle-vent) framework that can be used in periods of scarcity. Although it is not a medical device, the system utilizes a wide range of commonly-available components that are combined using basic electronics skills to achieve the desired performance. The main function of the gentle-vent is to generate a calibrated pressure wave at the pump to provide support to the patient's breathing. Each gentle-vent permutation was tested using a DIY manometer as it would be utilized in the field in low-resource settings and validated with an open source VentMon. …


Gradient And Pressure Recovery Of A Self-Expandable Transcatheter Aortic Valve Depends On Ascending Aorta Size: In Vitro Study, Milad Samaee, Hoda Hatoum, Michael Biersmith, Breandan Yeats, Shelley C. Gooden, Vinod H. Thourani, Rebecca T. Hahn, Scott Lilly, Ajit Yoganathan, Lakshmi Prasad Dasi Mar 2022

Gradient And Pressure Recovery Of A Self-Expandable Transcatheter Aortic Valve Depends On Ascending Aorta Size: In Vitro Study, Milad Samaee, Hoda Hatoum, Michael Biersmith, Breandan Yeats, Shelley C. Gooden, Vinod H. Thourani, Rebecca T. Hahn, Scott Lilly, Ajit Yoganathan, Lakshmi Prasad Dasi

Michigan Tech Publications

Objective: In this study we aimed to understand the role of interaction of the Medtronic Evolut R transcatheter aortic valve with the ascending aorta (AA) by evaluating the performance of the valve and the pressure recovery in different AA diameters with the same aortic annulus size. Methods: A 26-mm Medtronic Evolut R valve was tested using a left heart simulator in aortic root models of different AA diameter (D): small (D = 23 mm), medium (D = 28 mm), and large (D = 34 mm) under physiological conditions. Measurements of pressure from upstream to downstream of the valve were performed …


Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan Feb 2022

Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan

Michigan Tech Publications

Stimuli-responsive drug delivery systems are urgently required for injectable site-specific delivery and release of drugs in a controlled manner. For this purpose, we developed novel pH-sensitive, biodegradable, and antimicrobial hydrogels from bio-macromolecule pectin, polyvinylpyrrolidone (PVP), 3-aminopropyl (diethoxy)methyl silane (3-APDEMS), and sepiolite clay via blending and solution casting technique. The purified sepiolite (40 um) was functionalized with 3-APDEMS crosslinker (ex-situ modification) followed by hydrogels fabrication. FTIR and SEM confirmed crosslinked structural integrity and rod-like morphology of hydrogels respectively. The swelling properties of hydrogels could be controlled by varying the concentration of modified clay in pectin/PVP blends. Moreover, the decrease in pH …


Graphene Oxide Functionalized Biosensor For Detection Of Stress-Related Biomarkers, Erican Santiago, Shailu Shree Poudyal, Sung Y. Shin, Hyeun Joong Yoon Jan 2022

Graphene Oxide Functionalized Biosensor For Detection Of Stress-Related Biomarkers, Erican Santiago, Shailu Shree Poudyal, Sung Y. Shin, Hyeun Joong Yoon

Michigan Tech Publications

A graphene oxide (GO)-based cortisol biosensor was developed to accurately detect corti-sol concentrations from sweat samples at point-of-care (POC) sites. A reference electrode, counter electrode, and working electrode make up the biosensor, and the working electrode was functional-ized using multiple layers consisting of GO and antibodies, including Protein A, IgG, and anti-Cab. Sweat samples contact the anti-Cab antibodies to transport electrons to the electrode, resulting in an electrochemical current response. The sensor was tested at each additional functionalization layer and at cortisol concentrations between 0.1 and 150 ng/mL to determine how the current response differed. A potentiostat galvanostat device was …


Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion Jan 2022

Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion

Michigan Tech Publications

Due to the excellent biocompatibility of Zn and Zn-based alloys, researchers have shown great interest in developing biodegradable implants based on zinc. Furthermore, zinc is an essential component of many enzymes and proteins. The human body requires ~15 mg of Zn per day, and there is minimal concern for systemic toxicity from a small zinc-based cardiovascular implant, such as an arterial stent. However, biodegradable Zn-based implants have been shown to provoke local fibrous encapsulation reactions that may isolate the implant from its surrounding environment and interfere with implant function. The development of biodegradable implants made from Zn-Fe-Ca alloy was designed …


Patient-Specific Cardiovascular Superelastic Niti Stents Produced By Laser Powder Bed Fusion, Valentina Finazzi, Francesca Berti, Roger J. Guillory Ii, Lorenza Petrini, Barbara Previtali, Ali Gökhan Demir Jan 2022

Patient-Specific Cardiovascular Superelastic Niti Stents Produced By Laser Powder Bed Fusion, Valentina Finazzi, Francesca Berti, Roger J. Guillory Ii, Lorenza Petrini, Barbara Previtali, Ali Gökhan Demir

Michigan Tech Publications

To date, there is a general lack of customizability within the selection of endovascular devices for catheter-based vascular interventions. Laser powder bed fusion (LPBF) has been flexibly exploited to produce customized implants using conventional biomedical alloys for orthopedic and dental applications. Applying LPBF for cardiovascular applications, patient-specific stents can be produced with small struts (approximately 100-300 µm), variable geometries, and clinically used metals capable of superelastic behaviour at body temperature (eg. equiatomic nickel-titanium alloys, NiTi). Additionally, the growing availability and use of patient-specific 3D models provides a unique opportunity to outline the necessary manufacturing process that would be required for …


An Antimicrobial Polydopamine Surface Coating To Reduce Biofouling On Telemetry Tags Used In Marine Conservation Practices, Ariana Smies Jan 2022

An Antimicrobial Polydopamine Surface Coating To Reduce Biofouling On Telemetry Tags Used In Marine Conservation Practices, Ariana Smies

Dissertations, Master's Theses and Master's Reports

Satellite telemetry tags are used to track the migration patterns of large cetaceans. These tags penetrate the dermis and remain embedded in the underlying blubber tissue. As the dermis of cetaceans is host to a diverse microbiome, and it is impossible to clean the skin before implanting the devices, the potential for infection is increased when the tags penetrate through the skin. H2O2 is a potential antimicrobial agent that, in addition to showing broad-spectrum efficacy against gram-negative and gram-positive bacteria, can promote wound healing outcomes by promoting proliferative factors and peptides that protect against oxidative stress. However, …