Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Modeling Residence Time Distribution Of Chromatographic Perfusion Resin For Large Biopharmaceutical Molecules: A Computational Fluid Dynamic Study, Kevin Vehar Dec 2020

Modeling Residence Time Distribution Of Chromatographic Perfusion Resin For Large Biopharmaceutical Molecules: A Computational Fluid Dynamic Study, Kevin Vehar

KGI Theses and Dissertations

The need for production processes of large biotherapeutic particles, such as virus-based particles and extracellular vesicles, has risen due to increased demand in the development of vaccinations, gene therapies, and cancer treatments. Liquid chromatography plays a significant role in the purification process and is routinely used with therapeutic protein production. However, performance with larger macromolecules is often inconsistent, and parameter estimation for process development can be extremely time- and resource-intensive. This thesis aimed to utilize advances in computational fluid dynamic (CFD) modeling to generate a first-principle model of the chromatographic process while minimizing model parameter estimation's physical resource demand. Specifically, …


Modeling, Designing And Applying Machine Learning Algorithms For Driver Drowsiness Detection, Mohsen Babaeian Jan 2020

Modeling, Designing And Applying Machine Learning Algorithms For Driver Drowsiness Detection, Mohsen Babaeian

CGU Theses & Dissertations

Driver drowsiness has been a significant hazard resulting in various traffic accidents. Therefore, monitoring this condition is crucial not only in alerting drivers, but also in avoiding fatal accidents. Many research studies propose new systems to reduce the number of drowsiness-related injuries and fatalities. The ultimate goal for a drowsiness detection system is to detect the drowsiness on time and minimize the system or environment errors to avoid false readings, such as studying physiological signal processing patterns. These potentially life-saving systems must operate in a timely manner with the highest precision. Researchers proposed various methods based on driving pattern changes, …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …