Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Microfluidics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 96

Full-Text Articles in Biomedical Engineering and Bioengineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Colloid Fabrication For Biomedical Engineering Applications Through Droplet Microfluidics, Lewis I. Larsen Dec 2023

Colloid Fabrication For Biomedical Engineering Applications Through Droplet Microfluidics, Lewis I. Larsen

Biomedical Engineering ETDs

The goal of this work was to leverage soft colloid fabrication through droplet microfluidics to improve the biomedical fields of radiotracer microspheres for selective internal radiation therapy (SIRT) and 3D hydrogel tissue constructs for cell culture with future potential as a platform to study liver diseases and drug response. The importance of positron emission tomography (PET) imaging microspheres infused with positron-emitting radioisotopes such as Ga-68, Cu-64, and F-18 is that they accurately map tumor-to-liver uptake (TLR) ratio and lung shunting factor of hepatocellular carcinoma. These pretreatment radiotracers model the intravascular accumulation behavior of radioactive therapeutic Y-90 SIRT microspheres. Qualifying patients, …


Development And Application Of A Microfluidic Platform For Quantifying Intra-Tumoral Compressive Stress., Zachary P. Fowler Aug 2023

Development And Application Of A Microfluidic Platform For Quantifying Intra-Tumoral Compressive Stress., Zachary P. Fowler

Electronic Theses and Dissertations

Cancer progression is linked to the emergence of aberrant mechanical signaling in the tumor microenvironment. Modulation of extrinsic signals, such as ECM stiffness and composition, have been thoroughly explored. However, the development of solid stresses within the tumor remains poorly understood. To address this, we have developed a microfluidic platform that generates deformable alginate microbeads that allow for the quantification of compressive stresses generated within a growing glioblastoma (GBM) tumorsphere. PDMS microfluidic devices were fabricated via SU-8 mold with channels ranging from 10µm-40µm in diameter. Fluorescently labeled sodium alginate underwent a cross-linking reaction within the device to generate monodisperse beads …


Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber May 2023

Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber

McKelvey School of Engineering Theses & Dissertations

The lymphatic system is responsible for immune circulation and fluid balance in the body. It accomplishes this by draining interstitial fluid from local tissue and transferring it to lymph nodes and back into blood circulation. However, this process is implicated in many pathologies, one of the most dangerous being breast cancer metastasis to the lymph nodes. The largest factor in breast cancer patient mortality is metastasis. Lymphangiogenesis, the growth of new lymphatic vessels, has been thought to play a dynamic role in aiding breast cancer metastasis. Breast cancer tumor cells have been shown to remodel the functionality of local lymph …


The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo May 2023

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo

KGI Theses and Dissertations

Nucleic acid amplification tests (NAATs) are among the diagnostic tests with the highest sensitivity and specificity. However, they are more complex to develop than other diagnostic tests such as biochemical tests and lateral flow immunoassay tests. Polymerase chain reaction (PCR) is the gold standard for NAATs. PCR requires thermal cycling to achieve clonal amplification of the target pathogen DNA for diagnosis. Thermal cycling poses a challenge in the development of PCR diagnostics for point-of-care (POC) settings. Loop-mediated isothermal amplification (LAMP) offers an isothermal method for NAATs diagnostics. The advancement of the microfluidics field significantly enhances the development of LAMP diagnostics …


A 3d Bioprinted Hydrogel Microfluidic Device For Screening Applications, Anant Bhusal Jan 2023

A 3d Bioprinted Hydrogel Microfluidic Device For Screening Applications, Anant Bhusal

Theses and Dissertations

The microfluidic enabled the integration of engineered miniaturized tissue models for drug screening. Conventional polydimethylsiloxane or plastic-based devices require multiple fabrication steps, which are challenging. We developed a 3D bioprinting approach to create prototypes of hydrogel-based multi-material microfluidic devices integrated with microtissue models. The approach utilizes poly(ethylene glycol) diacrylate and gelatin-methacryloyl to create microfluidic chips using multi-material bioprinting capacity with a high resolution of 15µm on x-y and 50µm on the z-axis and post-printing viability of >90%. We demonstrated easy regulation of stiffness from 24±5 kPa to 1,180±9 kPa and burst pressure from 16±1kPa to 256±19 kPa in the chip …


Simulating The Effect Of Gut Microbiome On Cancer Cell Growth Using A Microfluidic Device, Ekansh Mittal, Grace Cupp, Youngbok (Abraham) Kang Jan 2023

Simulating The Effect Of Gut Microbiome On Cancer Cell Growth Using A Microfluidic Device, Ekansh Mittal, Grace Cupp, Youngbok (Abraham) Kang

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The imbalance in the gut microbiome plays a vital role in the progression of many diseases, including cancer, due to increased inflammation in the body. Since gut microbiome-induced inflammation can serve as a novel therapeutic strategy, there is an increasing need to identify novel approaches to investigate the effect of inflammation instigated by gut microbiome on cancer cells. However, there are limited biomimetic co-culture systems that allow testing of the causal relationship of the microbiome on cancer cells. Here we developed a microfluidic chip that can simulate the interaction of the gut microbiome and cancer cells to investigate the effects …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Designing A Self-Regulating And Portable Heating Device For A Microfluidic Based Biosensor, Riya Mahajan May 2022

Designing A Self-Regulating And Portable Heating Device For A Microfluidic Based Biosensor, Riya Mahajan

Discovery Undergraduate Interdisciplinary Research Internship

Paper-based biosensors are powerful microfluidic analytical devices that are potentially useful for a wide range of applications, ranging from medical diagnostics to agricultural and environmental monitoring. Molecular diagnostics have limitations because they need to send samples back to a centralized laboratory, which increases the cost and turnaround time of the test. This project aims to create a simple-to-use, low-cost, and portable heating system that would facilitate the creation of a field-deployable paper-based analytical device that can incubate the sample at elevated temperatures for conducting isothermal molecular assays. Our design aims to miniaturize a commercial water bath and will be fabricated …


Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan Mar 2022

Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan

LSU Doctoral Dissertations

Globally cell culture is an $18.98 billion industry as of 2020, with an 11.6 percent annual growth rate. Drug discovery has an estimated worth of $69.8 billion in 2020 and is predicted to grow to $110.4 billion by 2025. Three-dimensional (3D) cell culture of cancer cells is one of the rapidly growing felids since it better recapitulates in vivo conditions compared to two-dimensional (2D) models. However, it is challenging to grow 3D tumor spheroids outside the body, and some of the existing technology can generate these spheroids outside the human body but poorly mimic in vivo tumor models. Therefore, there …


An Electrochemical, Fluidic, Chip-Based Biosensor For Biomarker Detection, Lauren Bell Jan 2022

An Electrochemical, Fluidic, Chip-Based Biosensor For Biomarker Detection, Lauren Bell

Theses and Dissertations--Biomedical Engineering

Biosensors and their use in both the research and clinical field for the detection and monitoring of critical biomarkers are prevalent and constantly improving. However, continued research needs to be done to address shortcomings, such as low sensitivity, poor specificity, and poor readiness for integration into research use and patient care. The objective of this research was to create a combined fluidic, chip-based biosensor that could detect different biomarkers with high sensitivity and ease of use. For assessing the developed sensor, three separate biomarkers were tested: glucose, cholesterol, and oxygen. Both the glucose biosensor and cholesterol biosensor were combined with …


Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally Dec 2021

Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally

Electronic Theses and Dissertations

Cellular microenvironment or cell niche plays an important role in developmental biology and disease pathophysiology. Physical or chemical signals in microenvironment drive the cellular activity. These signaling molecules are generated from the surrounding cells/tissues as part of intercellular communication; a fundamental property of a cell. Dynamic profile of these signaling molecules in the microenvironment plays a pivotal role in transfer of molecular information from cell to cell in disease proliferation or fate determination. Recapitulating these signaling cues in an in vitro study is difficult to achieve using standard cell culture techniques. However microfluidic systems are capable of addressing these issues, …


Development Of A Microfluidic Viscoelastic Hemostatic Assay For Real-Timeviscosity Measurements Of Blood, Shay Kent Aug 2021

Development Of A Microfluidic Viscoelastic Hemostatic Assay For Real-Timeviscosity Measurements Of Blood, Shay Kent

Electronic Theses and Dissertations

Blood coagulation disorders are malfunctions in the body’s ability to control blood clotting. It can result in either insufficient clotting causing an increased risk of bleeding or excessive clotting obstructing blood flow. The rapid and accurate diagnosis of coagulopathies is an important, unmet need in the clinical setting. Rapidly identifying the source of bleeding, either acquired or inherited, is critical to reduce the risk of major blood loss and deliver personalized hemostatic therapies. Viscoelastic hemostatic assays, or VHAs, deliver an effective solution to the diagnosis of coagulopathies by evaluating global hemostatic function using whole blood rather than plasma. VHAs are …


Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li Jul 2021

Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li

Electronic Thesis and Dissertation Repository

Locoregional treatment is the specific delivery of therapeutics to their desired sites of action with minimized systemic adverse effects. In this approach, drug is administered through topical instillation, inhalation, intra-lesional or intra-arterial injection. Decades of experience in locoregional treatment have delivered meaningful benefits to patients with localized diseases (e.g., osteoarthritis, ocular disorders and liver cancers). However, improvements are required for this type of treatment to be more effective. For transarterial chemoembolization (TACE) therapy of hepatocellular carcinoma (HCC), the most current approaches do not allow repeat treatment as the drug delivery vehicle is not degradable. In addition, image contrast agents for …


Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh Jul 2021

Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh

Electronic Theses and Dissertations

Microfluidic droplet generation is popular in lab-on-a-chip based biochemical analysis because it can provide precise and high throughput fluids in the form of small droplets. This thesis presents a T-junction microdroplet generator with pneumatic actuation for regulating droplet size and a capacitance-based sensor with real-time sensing capability for characterizing droplet composition and size. The multi-layer device developed in this thesis is compatible with rapid manufacturing using a desktop-based laser cutter to fabricate the fluidic and pneumatic layers. A finite element based numerical model was developed to predict the best operating and geometric parameters for droplet generation. It was revealed that …


Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann Jun 2021

Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann

Master's Theses

In this work, a novel microfluidic cell culture platform capable of automated electrical impedance measurements and immunofluorescence and brightfield microscopy was developed for further in-vitro cellular research intended to optimize cell culture conditions. The microfluidic system design, fabrication, automation, and design verification testing are described. Electrical and optical measurements of the 16 parallel cell culture chambers were automated via a custom LabView interface. A proposed design change will enable gas diffusion, removing the need for an environmental enclosure and allow long-term cell culture experiments. This "lab on a chip" system miniaturizes and automates experiments improving testing throughput and accuracy while …


Isomotive Dielectrophoresis For Enhanced Analyses Of Cell Subpopulations., Mohamed Zakarya Rashed May 2021

Isomotive Dielectrophoresis For Enhanced Analyses Of Cell Subpopulations., Mohamed Zakarya Rashed

Electronic Theses and Dissertations

As the relentless dream of creating a true lab-on-a-chip device is closer to realization than ever before, which will be enabled through efficient and reliable sample characterization systems. Dielectrophoresis (DEP) is a term used to describe the motion of dielectric particles/ cells, by means of a non-uniform electric field (AC or DC). Cells of different dielectric properties (i.e., size, interior properties, and membrane properties) will act differently under the influence of dielectrophoretic force. Therefore, DEP can be used as a powerful, robust, and flexible tool for cellular manipulation, separation, characterization, and patterning. However, most recent DEP applications focus on …


Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba Mar 2021

Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba

KGI Theses and Dissertations

Design and Development of Platforms for the Application of Loop-mediated Isothermal Nucleic Acid Amplification, LAMP, in the Diagnosis of Polymicrobial Diseases

Tochukwu Dubem Anyaduba, Travis Schlappi (PI)

For the past two decades, several isothermal nucleic acid amplification technologies have emerged. These are mostly in response to the need for robust molecular diagnostic tools amenable to point-of-care and limited-resource settings. Of these, loop-mediated isothermal amplification, LAMP, stands out as a highly specific and rapid alternative to the polymerase chain reaction, PCR. One of LAMP's significant characteristics involves using four essential and two loop (rate increasing) primers to recognize six to eight …


Two-Dimensional & Three-Dimensional Microarray Cell Culture Using Elastomeric Assembly Substrates, Angel Olivera-Torres Jan 2021

Two-Dimensional & Three-Dimensional Microarray Cell Culture Using Elastomeric Assembly Substrates, Angel Olivera-Torres

Honors Theses

Tissue engineering and regenerative medicine represent the collection of all engineering disciplines brought together for the common goal of developing novel ways of growing tissues and organs in the laboratory. Efforts have made it possible to replicate or induce growth of 2D structures in the human body like skin, but the clinical need for on-demand solid organs has yet to be met due to lack of understanding of the variables responsible for organogenesis. Cell-colony heterogeneity, 3D-cellular architecture, bioactive molecules, and crosstalk communication between parenchymal cell populations need to be further investigated, and high-throughput technologies can rapidly increase the rate at …


Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan Jan 2021

Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan

Doctoral Dissertations

Digital microfluidics in combination with emulsion microfluidics are crucial building blocks of droplet-based microfluidics, which are prevalent in a wide variety of industrial and biomedical applications, including polymer processing, food production, drug delivery, inkjet printing, and cell-based assays. Therefore, understanding the dynamics and interactions of droplets as well as the interactions between the droplets and solid surfaces are of great importance in order to improve the performance or product in these applications.

Recently, several studies in the literature have demonstrated the potential of magnetic fields in controlling the behavior of droplets in microscale; however, the fundamental mechanism behind the interesting …


Engineering Platforms For Advancing Plant Synthetic Biology, Tayler Marie Schimel Mcneillie Dec 2020

Engineering Platforms For Advancing Plant Synthetic Biology, Tayler Marie Schimel Mcneillie

Doctoral Dissertations

This work describes research aimed at adapting advanced engineering systems for plant biotechnology. The droplet interface bilayer (DIB) is a robust and versatile platform for replicating model cell membranes, providing a bottom-up approach for synthetic cell- and tissue-like structures. In this work, a microfluidic device featuring five inlets, one for the continuous oil phase and four discrete aqueous channels for droplet generation was designed. Droplet production rates were controlled by adjusting the applied pressure of each inlet; and thus, altering the droplet sequence for capturing linear DIB networks in a downstream hydrodynamic trapping array. This microfluidic system provides a high-throughput …


A Protocol For Achieving Adherent Cell Culture Within A Microfluidic Device, Tarra Danielle Sanders Dec 2020

A Protocol For Achieving Adherent Cell Culture Within A Microfluidic Device, Tarra Danielle Sanders

Master's Theses

The goal of this study is to design a protocol for the adherent cell culture within a novel microfluidic device. Microscale cell culture protocols were developed for loading cells using poly-L-lysine to enhance adherent cell culture of murine derived NIH 3T3 fibroblasts. This work sought to develop a method for adherent microculture by examining various sterilization, surface treatment, and seeding techniques. Using a vacuum suction loading technique, air plasma treatment and a poly-L-lysine surface treatment adherent cell culture was observed within the device. The work presented here is part of a collaborative effort that aims to develop protocols for the …


Bioprinted In Vitro Model Of Human Glioblastoma, Rachel Lauren Schwartz Aug 2020

Bioprinted In Vitro Model Of Human Glioblastoma, Rachel Lauren Schwartz

Theses and Dissertations

Glioblastoma multiform (GBM) is one of the most aggressive forms of primary brain tumors. GBM is fast progressing and resistant to treatment, resulting in a low survival rate. Conventional 2-dimensional tissue culture models cannot fully replicate the complexities of cancer lesions that contain multiple cell types and structures (e.g. vessels composed of endothelial cells, cancer cells, normal cells, etc.) as well as an intricate scaffold of proteins comprising the extracellular matrix (ECM). In addition, animal models cannot translate into the clinical disease in patients. Thus, this study has developed a bioprintable organ-on-a-chip (OOAC) model that mimics the important ECM factors …


Opendrop Elisa: Surface Development For Digital Microfluidic Elisa Testing, Michaela Q. Mead, Madeline G. Jackson, Jacob G. Taylor May 2020

Opendrop Elisa: Surface Development For Digital Microfluidic Elisa Testing, Michaela Q. Mead, Madeline G. Jackson, Jacob G. Taylor

Biomedical Engineering

This project aimed to develop a process to create a hydrophobic coating with capture antibodies attached. This process was developed in an attempt to create a digital microfluidic platform upon which an enzyme-linked immunosorbent assay (ELISA) could be run, indicated for clinicians and educators in low-resource settings. Four requirements dictated the course of the design process: 1) the contact angle with water of the hydrophobic layer must be greater than 90º, 2) the colorimetric response of a positive ELISA result on our platform must be at least 85% of that run on polystyrene with the same result, 3) the platform …


Insulative (Direct Current) Dielectrophoretic Foul-Less Filtration In Microfuidic Systems, Matthew A A Whitman Mar 2020

Insulative (Direct Current) Dielectrophoretic Foul-Less Filtration In Microfuidic Systems, Matthew A A Whitman

Master's Theses

Filtration is a technology that is used almost ubiquitously in society from uses raging from filtration of macroparticles from water to pharmaceutical grade filtration products to remove anything larger than a protein. However, with such a wide range of uses, most filtration products have the same issue; membrane clogging (fouling) that prevents continuous use and requires frequent maintenance. This thesis hypothesizes that by applying a direct current (DC) to an insulating array of posts, they will create a foul-less insulative dielectrophoretic filter (iDEP) that does not clog since particles will levitate above the insulating array.

This thesis tested an inherited …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Investigation Of Dielectrophoretic Microfluidic Trap System For Separation And Parallel Analysis Of Single Particles, Tae Joon Kwak Aug 2019

Investigation Of Dielectrophoretic Microfluidic Trap System For Separation And Parallel Analysis Of Single Particles, Tae Joon Kwak

Theses and Dissertations

Separation and identification of single molecules and particles based on their chemical, biochemical and physical properties are critical in wide range of biomedical applications. Manipulating a single biomolecule requires sensitive approaches to avoid damage to the molecule. Recent progress in micro- and nano-technology enabled the development of various novel methods and devices to trap, separate, and characterize micro- and nano-particles. In this dissertation, a microfluidic particle trap system to electrically separate particles at the single particle level was developed through particle manipulation methods using dielectrophoresis. The research in this dissertation will explain the operation strategy and setup of the novel …


A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz Jul 2019

A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz

Biomedical Engineering ETDs

Early and accurate detection of bacterial infections can help save lives, prevent the spread of disease, and decrease the overuse of antibiotics. Our team at the Los Alamos National Laboratory has developed novel assays to detect bacterial biomarkers from patient blood at the point-of-care in order to facilitate a universal diagnostic platform. However, these biomarkers are amphiphilic in nature, and this biochemical property causes them to be sequestered by high-density and low-density lipoproteins (HDL and LDL) in the host’s blood. Extraction of the bacterial biomarkers from the lipoprotein complexes is thereby required for the development and deployment of a diagnostic …


Microfluidic Chip For High Efficiency Microinjection Of Caenorhabditis Elegans, Delaney Gray, Alex Hadsell, Jessica Talamantes Jun 2019

Microfluidic Chip For High Efficiency Microinjection Of Caenorhabditis Elegans, Delaney Gray, Alex Hadsell, Jessica Talamantes

Bioengineering Senior Theses

The terrestrial nematode, Caenorhabditis elegans, is an invaluable model organism for the study of molecular and cellular processes due to their small size, rapid generation time, easy cultivation, and invariant cell number. Additionally, 40% of genes known to be associated with human disease have clear orthologs in the C. elegans genome. In C. elegans genetics research, microinjection of genetic material into the worms is critical. Although an established technique, manual microinjection is tedious, low-throughput, and requires an expert researcher. This thesis details a novel microfluidic device designed to perform high-throughput microinjection. This two-layer, PDMS-based chip integrates microfluidic elements to …