Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin Mar 2024

La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin

Research Symposium

Early cancer detection is paramount for effective treatment and potential cures. This research explores the application of perovskite materials, specifically Sr2+-doped Lanthanum Cobaltite (La1-xSrxCoO3) nanomaterials, in cancer detection, with a focus on rats as an experimental model. The ferroelectric nature of these materials, synthesized through a combination of sol-gel and molten-salt processes, was examined at varying Sr2+ doping levels (1-20 wt%). Rigorous characterization, employing X-ray diffraction and scanning electron microscopy, confirmed the uniform morphology of nano cubes, laying the foundation for subsequent investigations. The magnetic properties of the perovskite nanoparticles were probed, suggesting their potential as a diagnostic tool for …


Developing An Immunomodulatory Strategy Using Biophysical Cues To Modulate Macrophage Phenotype For Fracture Healing And Bone Regeneration, Harshini Suresh Kumar Jan 2024

Developing An Immunomodulatory Strategy Using Biophysical Cues To Modulate Macrophage Phenotype For Fracture Healing And Bone Regeneration, Harshini Suresh Kumar

Theses and Dissertations--Biomedical Engineering

Chronic inflammation is a major cause of the pathogenesis of musculoskeletal diseases such as fragility, fracture, and nonunion. Studies have shown that modulating the immune phenotype of macrophages from proinflammatory to pro-healing can heal recalcitrant bone defects. Current therapeutic strategies predominantly apply biochemical cues, which often lack target specificity, and controlling their release kinetics in vivo is challenging spatially and temporally. We have developed a magnetic iron-oxide nanocomplexes (MNC)-based therapy for resolving chronic inflammation in the context of promoting fracture healing. Here, we show that MNC internalized macrophages, when coupled with an external magnetic field, can exert an intracellular magnetic …