Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Xenograft For Annular Repair Using Pulsed Electric Field Exposures For Enhanced Decellularization, Prince Mensah Kwaku Atsu Jan 2024

Development Of A Xenograft For Annular Repair Using Pulsed Electric Field Exposures For Enhanced Decellularization, Prince Mensah Kwaku Atsu

Theses and Dissertations

Severe back injuries and chronic pain necessitate surgical replacement of damaged intervertebral disc (IVD) cartilage in advanced disease stages. Bovine IVD tissue has been exposed to an upper threshold pulsed electric field (PEF) dose, causing cell death without thermal damage to the tissue. Subsequent PEF exposures at lower magnitudes have accelerated the removal of immunogenic biomolecules though electrokinetic extraction using optimized aqueous solutions. This approach yields a natural scaffold, ready for biocompatibility and mechanical strength assessment. The effects of microsecond pulsed electric fields (µsPEF) on primary bovine AF fibroblast-like cells have been characterized in vitro. PEFs of 10 and 100 …


Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori Jan 2024

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this …