Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

2017

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 295

Full-Text Articles in Biomedical Engineering and Bioengineering

Carbon Fiber Electrodes For In Vivo Neural Recording, Esma Cetinkaya Dec 2017

Carbon Fiber Electrodes For In Vivo Neural Recording, Esma Cetinkaya

Theses

Multi-channel micro electrodes for neural recording is a growing field that thrives on novel materials and fabrication techniques offered by micro fabrication technology. The material and the design of microelectrodes have a critical role on the quality of neural signals recorded. The neural signals collected by chronic implantation of these devices in experimental animals reveal new information about the brain functions and guide the development of new diagnostic and treatment options for neurological disorders.

Ideally, a microelectrode should meet two important criteria: longevity after implantation and minimal tissue insult. Carbon fibers` high tensile strength and flexibility allow fabrication of micro-scale …


An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr. Dec 2017

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr.

University of New Orleans Theses and Dissertations

In this work, we design a linear, two step implicit finite difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. Three separate models are analyzed, all of which can be described as systems of partial differential equations (PDE)s with nonlinear diffusion and reaction, where the biological colony grows and decays based on the substrate bioavailability. The systems under investigation are all complex models describing the dynamics of biological films. In view of the difficulties to calculate analytical solutions of the models, we design here a numerical technique …


Ls301 Fluorescence-Guided Photodynamic Therapy Of Brain Cancer Using Ppix Photosensitizer, Haini Zhang Dec 2017

Ls301 Fluorescence-Guided Photodynamic Therapy Of Brain Cancer Using Ppix Photosensitizer, Haini Zhang

McKelvey School of Engineering Theses & Dissertations

Incomplete brain tumor removal always causes neurologic deficit, disease recurrence and high mortality. Protoporphyrin IX (PpIX) accumulated in glioma cells with exogenous 5-aminolevulinic acid (5-ALA) serves as contrast agent for fluorescence-guided surgery and as well as acts as a photosensitizer for photodynamic therapy (PDT). However, the accurate tumor delineation using PpIX is limited by autofluorescence and superficial penetration depth. LS301 is a tumor-targeted near-infrared (NIR) contrast agent developed in our lab which allows deeper tumor imaging and avoids autofluorescence. My project aims to investigate whether LS301 can improve PpIX mediated PDT and tumor removal surgery. We have demonstrated co-localization of …


Next Generation Sequencing Technologies For Real-Time Genotyping And Targeted Sequencing For Precision Medicine, Priyanka Rawat Dec 2017

Next Generation Sequencing Technologies For Real-Time Genotyping And Targeted Sequencing For Precision Medicine, Priyanka Rawat

Biomedical Engineering ETDs

Astounding success of Human genome project and accelerating success of sequencing technologies have enabled $ 1000 genome goals possible. But, this is still far-fetched from the reach of many resource refrained populations with high genetic variations causing lethal genetic diseases. Based on present technology principles, I have developed prototypes for affordable, scalable and customizable point-of-care genotyping and targeted sequencing. Ion-sensitive field effect transistors with novel read-out and signal amplification techniques are used for laying foundation of possible ISFET based allele-arrays. Sequencing-by-synthesis based full-fledge sequencer is made with novel immobilization, flow-cell and data acquisition methods for massive sequenciing.


Development Of In Vitro Drug Screening Platforms Using Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells, Yosuke Kurokawa Dec 2017

Development Of In Vitro Drug Screening Platforms Using Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells, Yosuke Kurokawa

McKelvey School of Engineering Theses & Dissertations

Drug-induced cardiotoxicity is a critical challenge in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes (CMs), researchers have explored ways to utilize these cells for in vitro preclinical drug screening applications. One area of interest is microphysiological systems (i.e. organ-on-a-chip), which aims to create more complex in vitro models of human organ systems, thus improving drug response predictions. In this dissertation, we investigated novel analysis methods and model platforms for detecting drug-induced cardiotoxicity using human induced pluripotent stem cell (iPSC)-derived cardiovascular cells.

First, we utilized human iPSC-derived CMs (iPS-CMs) to establish optical methods of …


Reconstruction Algorithms For Novel Joint Imaging Techniques In Pet, Homayoon Ranjbar Dec 2017

Reconstruction Algorithms For Novel Joint Imaging Techniques In Pet, Homayoon Ranjbar

McKelvey School of Engineering Theses & Dissertations

Positron emission tomography (PET) is an important functional in vivo imaging modality with many clinical applications. Its enormously wide range of applications has made both research and industry combine it with other imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work is to study two cases in PET where the goal is to perform image reconstruction jointly on two data types.

The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules, and tracers, such …


Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

McKelvey School of Engineering Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third, …


Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape Dec 2017

Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape

McKelvey School of Engineering Theses & Dissertations

In traumatic brain injury (TBI), the skull-brain interface, composed of three meningeal layers: the dura mater, arachnoid mater, and pia mater, along with cerebrospinal fluid (CSF) between the layers, plays a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is a noninvasive imaging modality capable of providing in vivo estimates of tissue motion and material properties. The objective of this work is to augment human and phantom MRE studies to better characterize the mechanical contributions of the skull-brain interface to improve the parameterization and validation of computational models of TBI. Three specific aims …


Comparison Of The Bi-Directional Performance Of Micro-Channel Sieve And Thin-Film Time Peripheral Nerve Interfaces, Robert Coker Dec 2017

Comparison Of The Bi-Directional Performance Of Micro-Channel Sieve And Thin-Film Time Peripheral Nerve Interfaces, Robert Coker

McKelvey School of Engineering Theses & Dissertations

Sophisticated motorized prosthetic limbs contain multiple degrees of freedom of motion as well as embedded pressure and angle transducers to provide sensory feedback in amputees. Although several central neural recording and stimulation modalities exist for both controlling these motions and providing sensory feedback from a prosthetic limb, directly interfacing the peripheral nerves which originally innervated the limb has many advantages. A difficulty with this bi-directional approach is that electrically stimulating axons to provide haptic feedback creates stimulation artifacts at neighboring recording sites within the nerve that are several orders of magnitude larger than the electroneurogram used for control. In this …


System Characterizations And Optimized Reconstruction Methods For Novel X-Ray Imaging, Huifeng Guan Dec 2017

System Characterizations And Optimized Reconstruction Methods For Novel X-Ray Imaging, Huifeng Guan

McKelvey School of Engineering Theses & Dissertations

In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique …


System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou Dec 2017

System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou

McKelvey School of Engineering Theses & Dissertations

Photoacoustic computed tomography(PACT), also known as optoacoustic tomography (OAT), is an emerging imaging technique that has developed rapidly in recent years. The combination of the high optical contrast and the high acoustic resolution of this hybrid imaging technique makes it a promising candidate for human breast imaging, where conventional imaging techniques including X-ray mammography, B-mode ultrasound, and MRI suffer from low contrast, low specificity for certain breast types, and additional risks related to ionizing radiation. Though significant works have been done to push the frontier of PACT breast imaging, it is still challenging to successfully build a PACT breast imaging …


Bio-Inspired Multi-Spectral And Polarization Imaging Sensors For Image-Guided Surgery, Nimrod Missael Garcia Dec 2017

Bio-Inspired Multi-Spectral And Polarization Imaging Sensors For Image-Guided Surgery, Nimrod Missael Garcia

McKelvey School of Engineering Theses & Dissertations

Image-guided surgery (IGS) can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky, costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities to distinguish cancerous from healthy tissue. In my thesis, I have addressed these challenges in IGC by mimicking the visual systems of several animals to construct low power, compact and highly sensitive multi-spectral and color-polarization sensors. I …


Image Reconstruction Of The Speed Of Sound And Initial Pressure Distributions In Ultrasound Computed Tomography And Photoacoustic Computed Tomography, Thomas Paul Matthews Dec 2017

Image Reconstruction Of The Speed Of Sound And Initial Pressure Distributions In Ultrasound Computed Tomography And Photoacoustic Computed Tomography, Thomas Paul Matthews

McKelvey School of Engineering Theses & Dissertations

Ultrasound computed tomography (USCT) and photoacoustic computed tomography (PACT) are two emerging imaging modalities that have a wide range of potential applications from pre-clinical small animal imaging to cancer screening in human subjects. USCT is typically employed to measure acoustic contrasts, including the speed of sound (SOS) distribution, while PACT typically measures optical contrasts or some related quantity such as the initial pressure distribution. Their complementary contrasts and similar implementations make USCT and PACT a natural fit for a hybrid imaging system. Still, much work remains to realize this promise. First, USCT image reconstruction methods based on the acoustic wave …


Identification Of Prognostic Cancer Biomarkers Through The Application Of Rna-Seq Technologies And Bioinformatics, Nathan Wong Dec 2017

Identification Of Prognostic Cancer Biomarkers Through The Application Of Rna-Seq Technologies And Bioinformatics, Nathan Wong

McKelvey School of Engineering Theses & Dissertations

MicroRNAs (miRNAs) are short single-stranded RNAs that function as the guide sequence of the post-transcriptional regulatory process known as the RNA-induced silencing complex (RISC), which targets mRNA sequences for degradation through complementary binding to the guide miRNA. Changes in miRNA expression have been reported as correlated with numerous biological processes, including embryonic development, cellular differentiation, and disease manifestation. In the latter case, dysregulation has been observed in response to infection by human papillomavirus (HPV), which has also been established as both oncogenic in cervical cancers and oropharyngeal cancers and favorable for overall patient survival after tumor formation. The identification of …


Binding Affinity And Specificity Of Sh2 Domain Interactions In Receptor Tyrosine Kinase Signaling Networks, Tom Ronan Dec 2017

Binding Affinity And Specificity Of Sh2 Domain Interactions In Receptor Tyrosine Kinase Signaling Networks, Tom Ronan

McKelvey School of Engineering Theses & Dissertations

Receptor tyrosine kinase (RTK) signaling mechanisms play a central role in intracellular signaling and control development of multicellular organisms, cell growth, cell migration, and programmed cell death. Dysregulation of these signaling mechanisms results in defects of development and diseases such as cancer. Control of this network relies on the specificity and selectivity of Src Homology 2 (SH2) domain interactions with phosphorylated target peptides. In this work, we review and identify the limitations of current quantitative understanding of SH2 domain interactions, and identify severe limitations in accuracy and availability of SH2 domain interaction data. We propose a framework to address some …


Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli Dec 2017

Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli

McKelvey School of Engineering Theses & Dissertations

During the course of evolution, proteins have evolved to perform exquisite functions including structural support, signal transduction, actuation, sensing, catalysis, trafficking, gating, light-harvesting, charge transfer, molecular recognition, self-assembly, self-organization, or combinations of two or more of these functions. A precise control and manipulation of the structure and function of proteins is conceivable with the advent of nanotechnology, which has facilitated the integration of nanomaterials with functional biomolecules to realize bio-nano hybrids with synergistically enhanced functionalities.

At the genesis of bionanotechnology, a paucity in the fundamental understanding of the bio-nano interfaces is a grave impediment to the progress of the field. …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Optical Fibre-Based Force Sensing Needle Driver For Minimally Invasive Surgery, Pouya Soltani Zarrin Dec 2017

Optical Fibre-Based Force Sensing Needle Driver For Minimally Invasive Surgery, Pouya Soltani Zarrin

Electronic Thesis and Dissertation Repository

Minimally invasive surgery has been limited from its inception by insufficient haptic feedback to surgeons. The loss of haptic information threatens patients safety and results in longer operation times. To address this problem, various force sensing systems have been developed to provide information about tool–tissue interaction forces. However, the provided results for axial and grasping forces have been inaccurate in most of these studies due to considerable amount of error and uncertainty in their force acquisition method. Furthermore, sterilizability of the sensorized instruments plays a pivotal role in accurate measurement of forces inside a patient's body. Therefore, the objective of …


Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb Dec 2017

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) represents a promising adipogenic bioscaffold for applications in soft tissue augmentation or reconstruction. With the goal of investigating the role of syngeneic donor adipose-derived stem/stromal cells (ASCs) and host myeloid cells during in vivo adipose tissue regeneration, transgenic reporter mouse strains were used to track these cell populations within ASC-seeded and unseeded DAT scaffolds. Donor ASCs were obtained from dsRed transgenic mice. These cells were shown to express characteristic cell surface markers, and multilineage differentiation capacity was confirmed. To facilitate cell tracking, DAT scaffolds were subcutaneously implanted into MacGreen mice in which myeloid cells express enhanced …


Design, Implementation And Control Of A Robotic Platform For Post-Stroke Upper- And Lower-Limb Rehabilitation, Vahid Mehrabi Dec 2017

Design, Implementation And Control Of A Robotic Platform For Post-Stroke Upper- And Lower-Limb Rehabilitation, Vahid Mehrabi

Electronic Thesis and Dissertation Repository

Stroke is the primary cause of permanent disabilities worldwide. Hemiparesis and hemiplegia (the most common consequences of stroke) are the decreases in motor-functionality of the brain on one side of the body which will affect the daily life activities of the patient. There are several challenges with the current state of delivering rehabilitation services such as limitations on the number of the clinics, financial resources needed for providing rehabilitation, associated costs of transportation, and human resources. To overcome the issues related to conventional ways of delivering therapy, different robotic systems have been developed to benefit healthcare systems and patient with …


Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Investigation And Engineering Of Polyketide Biosynthetic Pathways, Lei Sun Dec 2017

Investigation And Engineering Of Polyketide Biosynthetic Pathways, Lei Sun

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This research is focused on investigation and engineering of natural product biosynthetic pathways for efficient production of pharmaceutically important molecules or generation of new bioactive molecules for drug development.

Natural products are an important source of therapeutics, such as chromomycin (anti-cancer), emodin (anti-inflammatory and anti-tumor) and sprolaxine (anti-Helicobacter pylori). Metabolic engineering of natural product biosynthetic pathways shows its promise for creating and producing valuable compounds with chemical diversity for drug discovery. One goal of this research is to create highly efficient strains to biosynthesize valuable natural products. The engineered Streptomyces roseiscleroticus strain constructed in this work showed higher …


Clinical Near-Infrared Spectroscopy Instrumentation: Postural Orthostatic Tachycardia Syndrome Studies, Parvathi Kadamati Dec 2017

Clinical Near-Infrared Spectroscopy Instrumentation: Postural Orthostatic Tachycardia Syndrome Studies, Parvathi Kadamati

Theses and Dissertations

ABSTRACT

CLINICAL NEAR-INFRARED SPECTROSCOPY INSTRUMENTATION: POSTURAL ORTHOSTATIC TACHYCARDIA SYNDROME STUDIES

by

Parvathi Kadamati

The University of Wisconsin-Milwaukee, 2017

Under the Supervision of Professor Mahsa Ranji

Aims: Postural orthostatic tachycardia syndrome (POTS) is a type of chronic orthostatic intolerance, annually affecting around 500,000 young Americans. Symptoms of POTS include lightheadedness and persistent increase in heart rate with upright body posture [1-3]. It requires a medical diagnosis. Impaired cerebral oxygenation of patients with POTS has been reported [4]. The pathophysiology remains unclear, and research is needed to understand the underlying conditions that lead to POTS. The aim of this research is to …


Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro Dec 2017

Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro

Biomedical Engineering Undergraduate Honors Theses

Despite the high prevalence of calcific aortic valve disease (CAVD), the underlying mechanisms of pathogenesis have not been found yet. Therefore, it is extremely important to study CAVD and understand how it develops. For this matter, we decided to study the potential of endothelial progenitor cells (EPCs) for use in tissue-engineered models of heart valves. EPCs were chosen as the cell source of interest for this study due to their high neovascularization potential and use in regenerative medicine and cardiovascular tissue engineering.

In this project, we aimed to engineer the microenvironment of cells that are involved in the formation of …


Development Of In-Vitro And In-Vivo Devices To Study The Mechanobiology Of Ligament Healing, John Bayard Everingham Dec 2017

Development Of In-Vitro And In-Vivo Devices To Study The Mechanobiology Of Ligament Healing, John Bayard Everingham

Boise State University Theses and Dissertations

Ligament injuries are the most common sports injury in the United States. The current clinical practice for treating ligament injuries leaves many patients with significant pain and joint laxity for years following the initial injury. Controlled mechanical stimulation of the tissue after injury is necessary for robust healing, but the optimal mechanical environment for ligament healing is not fully understood. Alternative therapies, such as instrument assisted soft tissue mobilization (IASTM), offer a form of mechanical stimulation that is non-invasive and has shown promising clinical outcomes but the optimal dosage for IASTM treatments is unknown. The objective of this study was …


Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards Dec 2017

Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards

Mechanical Engineering

In this report, the design process in creating an assistive device for Boccia Classification 3 (BC3) players is outlined. The initial research steps, including research into the rules of the game, capabilities of the players, and existing products is documented to show where ideas for the product stemmed from. This transitions into requirements that the sponsor requested, and preliminary designs and ideas for the product. Finally, this report explains the details of the final design, which has been analyzed for safety, ease of use, and ability to function under different conditions. The processes of manufacturing and testing will also be …


Eeg Characterization During Motor Tasks That Are Difficult For Movement Disorder Patients, Adam Joshua Aslam Dec 2017

Eeg Characterization During Motor Tasks That Are Difficult For Movement Disorder Patients, Adam Joshua Aslam

Master's Theses

Movement disorders are a group of syndromes that often arise due to neurological abnormalities. Approximately 40 million Americans are affected by some form of movement disorder, significantly impacting patients’ quality of life and their ability to live independently. Deep brain stimulation (DBS) is one treatment that has shown promising results in the past couple decades, however, the currently used open-loop system has several drawbacks. By implementing a closed-loop or adaptive DBS (aDBS) system, the need for expensive parameter reprogramming sessions would be reduced, side-effects may be relieved, and habituation could be avoided. Several biomarkers, for example signals or activity derived …


Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith Dec 2017

Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith

Master's Theses

Much work has been done to study the external stimulation of nervous tissue as well as the transmission of neural signals to electronics. Peter Fromherz was one of the pioneers in this area of electrophysiology, with a series of experiments in the 1990s that aimed to characterize and optimize the interface between neural tissue and transistors. In this thesis, Kurt Sjoberg and I interfaced a Retzius cell isolated from a Hirudo medicinalis ganglion with the insulated gate of a MOSFET. The goal was to see change in membrane potential that could be related Fromherz’s original 1991 work. Our experimental setup …


Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran Dec 2017

Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran

Electronic Theses and Dissertations

Pulmonary and cardiovascular dysfunction are consistently reported as the leading causes of morbidity and mortality among the 1,275,000 people who are living with chronic spinal cord injury (SCI) in the United States. Respiratory-cardiovascular complications from neurological disorders (primarily COPD and sleep apnea) are currently the number one cause of death and disability in the US.

The main goal of this project is to develop an inspiratory-expiratory training device for use in the rehabilitation of patients with respiratory motor and cardiovascular deficits that incorporates existing technologies and promotes successful training methodologies performed at the clinic and at home.

An embedded microprocessor …


Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …