Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Classifying Electrocardiogram With Machine Learning Techniques, Hillal Jarrar Dec 2021

Classifying Electrocardiogram With Machine Learning Techniques, Hillal Jarrar

Master's Theses

Classifying the electrocardiogram is of clinical importance because classification can be used to diagnose patients with cardiac arrhythmias. Many industries utilize machine learning techniques that consist of feature extraction methods followed by Naive- Bayesian classification in order to detect faults within machinery. Machine learning techniques that analyze vibrational machine data in a mechanical application may be used to analyze electrical data in a physiological application. Three of the most common feature extraction methods used to prepare machine vibration data for Naive-Bayesian classification are the Fourier transform, the Hilbert transform, and the Wavelet Packet transform. Each machine learning technique consists of …


Assessing The Effects Of Oxaliplatin On An In Vitro Three-Dimensional Human Colorectal Cancer Model, Sabrina Nelson Dec 2021

Assessing The Effects Of Oxaliplatin On An In Vitro Three-Dimensional Human Colorectal Cancer Model, Sabrina Nelson

Master's Theses

Colorectal cancer is the third most common cancer in the United States with a 5-year late-stage survival rate of only 14%. Due to the lack of translation between animal models and clinical trials as well as the inefficacy of many chemotherapeutics in initial clinical trials, researchers are turning to in vitro drug screening models in an effort to mimic the conditions in vivo. This research project aimed to validate an in vitro tumor culture model within a microfluidic device using a clinically relevant chemotherapy drug. The first experiment consisted of a cell density and drug concentration study to determine …


Characterizing Direction Specific Ganglion Cell Receptor Activation Using A Perturbation Based Decomposition Method, Camila Paola Monchini Moline Dec 2021

Characterizing Direction Specific Ganglion Cell Receptor Activation Using A Perturbation Based Decomposition Method, Camila Paola Monchini Moline

Master's Theses

Characterizing postsynaptic current signals in the retina by neuroreceptor activation frequency is important for studying the mechanism of action behind phototransduction of varied visual stimuli. A better understanding could in turn lead to the creation of methods for early detection and prevention of debilitating optical neuropathies, such as glaucoma, age-related macular degeneration, and retinitis pigmentosa. More recent in-vitro and in-vivo studies have aimed to differentiate the effects of various neurotransmitters, such as acetylcholine, GABA, and glutamate, on receiving and processing different types of visual stimuli from the retina into the visual cortex.

The focus of this work will be to …


Noninvasive Measurement Of Arterial Compliance With A Blood Pressure Cuff Using A Surrogate Arm Bench Top Model For Oscillometric Use, Shane Wilsey Aug 2021

Noninvasive Measurement Of Arterial Compliance With A Blood Pressure Cuff Using A Surrogate Arm Bench Top Model For Oscillometric Use, Shane Wilsey

Master's Theses

A surrogate arm model was created that is capable of being used for oscillometry. This model is capable of being used as a bench top model for blood pressure cuff devices. The arm consists of endplates and internal supports that are 3D printed with ABS, a silicone rubber outer sleeve, and interchangeable arteries made from two silicone rubber strips glued together at the edges. The interchangeable arteries have varying compliances that can be used as different inputs for oscillometric testing. A process was established to measure the artery compliances with a curve fit correlation of 0.95. However, testing revealed that …


Subclinical Atherosclerosis Quantified Through Cumulative Shear Measurement, Margaret Lynne Papka Aug 2021

Subclinical Atherosclerosis Quantified Through Cumulative Shear Measurement, Margaret Lynne Papka

Master's Theses

With the high mortality rate of cardiovascular disease, it is important to study the early signs. The early detection of cardiovascular disease can lead to saved lives. Currently the most prevalent detection methods are the Framingham Risk Score and the carotid intima media thickness, both of which are insufficient. The necessary tool for early detection requires a uniform quantification system. The stimulus leading to endothelial dysfunction, the most significant predictor of a major adverse cardiovascular event (MACE)—and subsequently subclinical atherosclerosis—is reduced shear stress. Increased surface relative roughness affects the flow profile transition from laminar to turbulent resulting in reduced shear …


Modeling Action Potential Propagation During Hypertrophic Cardiomyopathy Through A Three-Dimensional Computational Model, Julia Elizabeth Kelley Jun 2021

Modeling Action Potential Propagation During Hypertrophic Cardiomyopathy Through A Three-Dimensional Computational Model, Julia Elizabeth Kelley

Master's Theses

Hypertrophic cardiomyopathy (HCM) is the most common monogenic disorder and the leading cause of sudden arrhythmic death in children and young adults. It is typically asymptomatic and first manifests itself during cardiac arrest, making it a challenge to diagnose in advance. Computational models can explore and reveal underlying molecular mechanisms in cardiac electrophysiology by allowing researchers to alter various parameters such as tissue size or ionic current amplitudes. The goal of this thesis is to develop a computational model in MATLAB and to determine if this model can accurately indicate cases of hypertrophic cardiomyopathy. This goal is achieved by combining …


Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham Jun 2021

Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham

Master's Theses

The Tissue Engineering Research Lab at California Polytechnic State University, San Luis Obispo focuses on creating tissue-engineered blood vessel mimics (BVMs) for use in preclinical testing of vascular devices. These BVMs are composed of electrospun scaffolds made of an assortment of polymers that are seeded with different cell types. This integration of polymers with cells leads to the need for biocompatibility testing of the polymer scaffolds. Many of the lab’s newest scaffolds have not been fully characterized for biologic interactions. Therefore, the first aim of this thesis developed methods for in vitro cytotoxicity testing of polymers used in the fabrication …


Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann Jun 2021

Microfluidic Electrical Impedance Spectroscopy System Automation And Characterization, Keaton Frahmann

Master's Theses

In this work, a novel microfluidic cell culture platform capable of automated electrical impedance measurements and immunofluorescence and brightfield microscopy was developed for further in-vitro cellular research intended to optimize cell culture conditions. The microfluidic system design, fabrication, automation, and design verification testing are described. Electrical and optical measurements of the 16 parallel cell culture chambers were automated via a custom LabView interface. A proposed design change will enable gas diffusion, removing the need for an environmental enclosure and allow long-term cell culture experiments. This "lab on a chip" system miniaturizes and automates experiments improving testing throughput and accuracy while …


Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati May 2021

Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati

Master's Theses

The brain accounts for 20% of overall energy metabolism in the body though it just comprises 2% of the total body mass but has a limited capacity of storing energy unlike other critical organs in the body such as the heart and liver. This energy along with oxygen and nutrients is supplied by cerebral blood flow (CBF), any interruption of which can cease the brain function within seconds with a potential irreversible neuronal injury, within minutes. Vascular cells along with astrocytes and neurons are a part of a recently developed concept known as the Neurovascular Unit responsible for Neurovascular coupling …


Adaptive Laboratory Evolution Of Scenedesmus Obliquus For Increased Carbohydrate Content And Biomass Productivity, Nahel Ali Mar 2021

Adaptive Laboratory Evolution Of Scenedesmus Obliquus For Increased Carbohydrate Content And Biomass Productivity, Nahel Ali

Master's Theses

The economics of microalgal bioproduct commercialization would benefit from increased accumulation of energy storage compounds, such as carbohydrates and lipids, and increased biomass productivity. This thesis explores two adaptive laboratory evolution strategies for improving Scenedesmus obliquus: single UV-mutagenesis and low light cultivation at a high dilution rate to produce cultigens with greater carbohydrate content and iterative UV-mutagenesis and selection under outdoor conditions in a raceway pond at a high dilution rate to increase biomass productivity.

Two cultigens were generated with the goal of increased carbohydrate content: K5 and K7. Both were mutagenized for 5 seconds and cultivated in 50-mL …


The Effect Of Focused Ultrasound On Altering The Diameter Class Of Nerve Fibers Contributing To A Compound Evoked Potential, Analyzed Using A Perturbative Decomposition Technique., Megan Wurden Mar 2021

The Effect Of Focused Ultrasound On Altering The Diameter Class Of Nerve Fibers Contributing To A Compound Evoked Potential, Analyzed Using A Perturbative Decomposition Technique., Megan Wurden

Master's Theses

Peripheral neuropathies are disorders that involve the damage of peripheral nerve fibers, affecting the ability of different parts of the body to communicate. A differentiating factor in diagnosis between various clinical conditions can be which size class of nerve fibers are affected. A nerve conduction velocity test can be used to assess the viability of the nerve but is a single-parameter test and gives no information about the population characteristics of the remaining active fibers. A method developed and previously reported by Szlavik (2016) utilizes a mathematical perturbed decomposition to determine the normalized frequency of each size class of fiber …


Studying The Efficacy Of An Injectable 3-Dimensional Fibrin Extracellular Matrix To Characterize The Effects Of Antitumor Agents On Sw620 Cells In A Microfluidic Device, Thèo Anastos Mar 2021

Studying The Efficacy Of An Injectable 3-Dimensional Fibrin Extracellular Matrix To Characterize The Effects Of Antitumor Agents On Sw620 Cells In A Microfluidic Device, Thèo Anastos

Master's Theses

Colorectal cancer is the third most common cancer in the United States and there is currently a lot of research going into new antitumor agents to kill the cancer. One method for replicating the tumor response to a drug in vivo is by creating an in vitro drug testing model to replicate the in vivo condition. This research project was conducted to determine the efficacy of testing tumor cultures in a microfluidic device as a way to provide accurate drug responses in vitro instead of using in vivo subjects in clinical trials. A total of four experiments were conducted with …


Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno Mar 2021

Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno

Master's Theses

Bone is a largely bipartite viscoelastic composite. Its mechanical behavior is determined by strain rate and the relative proportions of its principal constituent elements, hydroxyapatite and collagen, but is also largely dictated by their geometry and topology. Collagen fibrils include many segments of tropocollagen in staggered, parallel sequences. The physical staggering of this tropocollagen allows for gaps known as hole-zones, which serve as nucleation points for apatite mineral. The distance between adjacent repeat units of tropocollagen is known as D-Spacing and can be measured by Atomic Force Microscopy (AFM). This D-Spacing can vary in length slightly within a bundle, but …


Development Of A Robust Methodology To Obtain And Assess Myogenic Precursor Cells For Their Use In Regenerative Therapies, Ricardo Lasa Mar 2021

Development Of A Robust Methodology To Obtain And Assess Myogenic Precursor Cells For Their Use In Regenerative Therapies, Ricardo Lasa

Master's Theses

Peripheral arterial occlusive disease (PAOD) is characterized by buildup of atherosclerotic plaque in peripheral arteries that leads to an occlusion that can interrupt the supply of blood to the peripheral tissue, causing downstream tissue ischemia/hypoxia. PAOD is estimated to affect over 200 million patients worldwide. Current surgical revascularization treatments can be effective in about half of the patient population, leading to a significant number of patients with no treatment options beyond pharmacological intervention and lifestyle modification. The decrease in blood flow downstream of the occlusion leads to increased blood pressure gradient in the microvasculature, specifically in vessels that connect arterial …