Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Sex Differences In Collateral Remodeling Following Hindlimb Arterial Occlusion, Laura Burckhardt Dec 2017

Sex Differences In Collateral Remodeling Following Hindlimb Arterial Occlusion, Laura Burckhardt

Master's Theses

Clinical evidence indicates a higher incidence of peripheral arterial occlusive disease and associated likelihood of critical limb ischemia in women, as well as worse prognosis and decreased survival post myocardial infarction. Therefore, understanding the possible differences in underlying vascular compensation mechanisms is crucial. With arterial occlusions, necrosis and tissue injury can be naturally mitigated by the collateral circulation, improving patient prognosis. Previous sex-comparison studies describing differences in vascular remodeling are inconsistent. Therefore, the aim of this study was to describe the effect of arterial occlusion on collateral remodeling in healthy male and healthy reproductive-stage female mice. At 7 days following …


Eeg Characterization During Motor Tasks That Are Difficult For Movement Disorder Patients, Adam Joshua Aslam Dec 2017

Eeg Characterization During Motor Tasks That Are Difficult For Movement Disorder Patients, Adam Joshua Aslam

Master's Theses

Movement disorders are a group of syndromes that often arise due to neurological abnormalities. Approximately 40 million Americans are affected by some form of movement disorder, significantly impacting patients’ quality of life and their ability to live independently. Deep brain stimulation (DBS) is one treatment that has shown promising results in the past couple decades, however, the currently used open-loop system has several drawbacks. By implementing a closed-loop or adaptive DBS (aDBS) system, the need for expensive parameter reprogramming sessions would be reduced, side-effects may be relieved, and habituation could be avoided. Several biomarkers, for example signals or activity derived …


Computer-Aided Diagnoses (Cad) System: An Artificial Neural Network Approach To Mri Analysis And Diagnosis Of Alzheimer's Disease (Ad), Berizohar Padilla Cerezo Dec 2017

Computer-Aided Diagnoses (Cad) System: An Artificial Neural Network Approach To Mri Analysis And Diagnosis Of Alzheimer's Disease (Ad), Berizohar Padilla Cerezo

Master's Theses

Alzheimer’s disease (AD) is a chronic and progressive, irreversible syndrome that deteriorates the cognitive functions. Official death certificates of 2013 reported 84,767 deaths from Alzheimer’s disease, making it the 6th leading cause of death in the United States. The rate of AD is estimated to double by 2050. The neurodegeneration of AD occurs decades before symptoms of dementia are evident. Therefore, having an efficient methodology for the early and proper diagnosis can lead to more effective treatments.

Neuroimaging techniques such as magnetic resonance imaging (MRI) can detect changes in the brain of living subjects. Moreover, medical imaging techniques are the …


Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith Dec 2017

Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith

Master's Theses

Much work has been done to study the external stimulation of nervous tissue as well as the transmission of neural signals to electronics. Peter Fromherz was one of the pioneers in this area of electrophysiology, with a series of experiments in the 1990s that aimed to characterize and optimize the interface between neural tissue and transistors. In this thesis, Kurt Sjoberg and I interfaced a Retzius cell isolated from a Hirudo medicinalis ganglion with the insulated gate of a MOSFET. The goal was to see change in membrane potential that could be related Fromherz’s original 1991 work. Our experimental setup …


Identifying And Reducing Variability, Improving Scaffold Morphology, And Investigating Alternative Materials For The Blood Vessel Mimic Lab Electrospinning Process, Evan M. Dowey Sep 2017

Identifying And Reducing Variability, Improving Scaffold Morphology, And Investigating Alternative Materials For The Blood Vessel Mimic Lab Electrospinning Process, Evan M. Dowey

Master's Theses

The work of the Cal Poly Tissue Engineering Lab is primarily focused on the fabrication, characterization, and improvement of “Blood Vessel Mimics” (BVMs), tissue engineered constructs used to evaluate cellular response to vascular medical devices. Currently, cells are grown onto fibrous, porous tubes made using an in-house electrospinning process from PLGA, a biocompatible co-polymer. The adhesion and proliferation of cells in a BVM is reliant on the micro-scale structure of the PLGA scaffold, and as such it is of great importance for the electrospinning process to consistently produce scaffolds of similar morphologies. Additionally, it has been shown that cell proliferation …


Sex Differences And The Effects Of Exercise Training On Functional Vasodilation Following Arterial Occlusion In The Balb/C Mouse Spinotrapezius, Britta Nelson Sep 2017

Sex Differences And The Effects Of Exercise Training On Functional Vasodilation Following Arterial Occlusion In The Balb/C Mouse Spinotrapezius, Britta Nelson

Master's Theses

Peripheral arterial occlusive disease (PAOD) often presents as intermittent claudication, which may be caused by impaired vasodilation. Impairment of resistance vessels may contribute to the pathogenesis of PAOD, and explain the poor correlation between resting blood flow and limb function. Collateral function following arterial occlusion is not well defined, however collaterals and arterialized collateral capillaries (ACCs) in male and female animal models exhibit impaired vasodilation following arterial occlusion, which can potentially be improved with exercise training. Furthermore, resistance vessels in the ischemic tree and stem are likely involved in the pathogenesis of PAOD, however the relative importance of each is …


Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz Jun 2017

Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz

Master's Theses

The development of tissue engineered blood vessel mimics for the testing of intravascular devices in vitro has been established in the Cal Poly tissue engineering lab. Due to the prevalence of cardiovascular disease in diabetic patients and minimal accessible studies regarding the interactions between diabetes and intravascular devices used to treat vascular disease, there is a need for the development of diabetic models that more accurately represents diabetic processes occurring in the blood vessels, primarily endothelial dysfunction. This thesis aimed to create a diabetic blood vessel mimic by implementing a high glucose environment for culturing human endothelial cells from healthy …


Application Of Argon Plasma Technology To Hydrophobic And Hydrophilic Microdroplet Generation In Pdms Microfluidic Devices, Brennan P. Graham Mar 2017

Application Of Argon Plasma Technology To Hydrophobic And Hydrophilic Microdroplet Generation In Pdms Microfluidic Devices, Brennan P. Graham

Master's Theses

Abstract Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic Devices Brennan Graham Microfluidics has gained popularity over the last decade due to the ability to replace many large, expensive laboratory processes with small handheld chips with a higher throughput due to the small channel dimensions [1]. Droplet microfluidics is the field of fluid manipulation that takes advantage of two immiscible fluids to create droplets from the geometry of the microchannels. This project includes the design of a microfluidic device that applies the results of an argon plasma surface treatment to polydimethylsiloxane (PDMS) to successfully …


Fluid Flow Characterization And In Silico Validation In A Rapid Prototyped Abdominal Aortic Aneurysm Model, Dean Thomas Wampler Mar 2017

Fluid Flow Characterization And In Silico Validation In A Rapid Prototyped Abdominal Aortic Aneurysm Model, Dean Thomas Wampler

Master's Theses

Aortic aneurysms are the 14th leading cause of death in the United States. Annually, abdominal aortic aneurysm (AAA) ruptures are responsible for 4500 deaths. There are another 45,000 repair procedures performed to prevent rupture, and of these approximately 1400 lead to deaths. With proper detection, the aneurysm may be treated using endovascular aneurysm repair (EVAR). Understanding how the flow of the blood within the artery is affected by the aneurysm is important in determining the growth of the aneurysm, as well as how to properly treat the aneurysm. The goal of this project was to develop a physical construct …