Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Chemical and Biochemical Engineering Faculty Research & Creative Works

2021

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Antibody-Drug Nanoparticle Induces Synergistic Treatment Efficacies In Her2 Positive Breast Cancer Cells, Muhammad Raisul Abedin, Kaitlyne Powers, Rachel Aiardo, Dibbya Barua, Sutapa Barua Dec 2021

Antibody-Drug Nanoparticle Induces Synergistic Treatment Efficacies In Her2 Positive Breast Cancer Cells, Muhammad Raisul Abedin, Kaitlyne Powers, Rachel Aiardo, Dibbya Barua, Sutapa Barua

Chemical and Biochemical Engineering Faculty Research & Creative Works

Chemotherapeutic drugs suffer from non-specific binding, undesired toxicity, and poor blood circulation which contribute to poor therapeutic efficacy. In this study, antibody–drug nanoparticles (ADNs) are engineered by synthesizing pure anti-cancer drug nanorods (NRs) in the core of nanoparticles with a therapeutic monoclonal antibody, Trastuzumab on the surface of NRs for specific targeting and synergistic treatments of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells. ADNs were designed by first synthesizing ~ 95 nm diameter × ~ 500 nm long paclitaxel (PTX) NRs using the nanoprecipitation method. The surface of PTXNRs was functionalized at 2′ OH nucleophilic site …


Comparative Evaluation Of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using A Sheep Model, Leyla Hasandoost, Daniella Marx, Paul Zalzal, Oleg Safir, Mark Hurtig, Cina Mehrvar, Stephen D. Waldman, Marcello Papini, Mark R. Towler Sep 2021

Comparative Evaluation Of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using A Sheep Model, Leyla Hasandoost, Daniella Marx, Paul Zalzal, Oleg Safir, Mark Hurtig, Cina Mehrvar, Stephen D. Waldman, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, …


In Vitro Osteogenic Performance Of Two Novel Strontium And Zinc-Containing Glass Polyalkenoate Cements, Daniella Marx, Alireza Rahimnejad Yazdi, Marcello Papini, Mark R. Towler Aug 2021

In Vitro Osteogenic Performance Of Two Novel Strontium And Zinc-Containing Glass Polyalkenoate Cements, Daniella Marx, Alireza Rahimnejad Yazdi, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Glass polyalkenoate cements (GPCs) are under investigation as potential bone adhesives, as they may provide an alternative to polymethylmethacrylate-based cements. GPCs containing strontium (Sr) and zinc (Zn) in place of aluminum (Al) are of particular interest because these ions are known stimulators of osteoprogenitor differentiation. GPCs have been manufactured from a novel bioactive glass (SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) in the past, but, while such materials have been assessed for their influence on viability, their influence on osteogenic function has not been investigated until now. For this study, two GPCs were formulated from the same glass precursor evaluated in previous studies. …


A Gallium-Doped Cement For The Treatment Of Bone Cancers. The Effect Of Zno ↔ Ga2o3substitution Of An Ionomeric Glass Series On The Rheological, Mechanical, Ph And Ion-Eluting Properties Of Their Corresponding Glass Polyalkenoate Cements, Sunjeev Phull, Alireza Rahimnejad Yazdi, Mark R. Towler Jun 2021

A Gallium-Doped Cement For The Treatment Of Bone Cancers. The Effect Of Zno ↔ Ga2o3substitution Of An Ionomeric Glass Series On The Rheological, Mechanical, Ph And Ion-Eluting Properties Of Their Corresponding Glass Polyalkenoate Cements, Sunjeev Phull, Alireza Rahimnejad Yazdi, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

The primary treatment for patients suffering from bone cancers is resection of the tumor followed by reconstruction of the damaged bone. Despite the administration of post-operative chemotherapy, tumor recurrence continues to present itself as a severe complication leading to re-operation. Attempts to incorporate chemotherapeutic drugs into bone cements elicits local toxic effects on healthy bone, which could compromise implant fixation. Alternatively, the local administration of gallium (Ga) may prove to be more effective. This report considers the development of a Ga ionomeric glass series (0.48SiO2-0.355ZnO-0.06CaO-0.08SrO-0.02P2O5-0.005Ta2O5, with 0.01-0.05 mol% substitution for …


In Vivo Analysis Of A Proprietary Glass-Based Adhesive For Sternal Fixation And Stabilization Using Rabbit And Sheep Models, Cina Mehrvar, Emily Deignan, Mark Hurtig, Gideon Cohen, Paul Zalzal, Oleg Safir, Adel Alhalawani, Marcello Papini, Mark R. Towler May 2021

In Vivo Analysis Of A Proprietary Glass-Based Adhesive For Sternal Fixation And Stabilization Using Rabbit And Sheep Models, Cina Mehrvar, Emily Deignan, Mark Hurtig, Gideon Cohen, Paul Zalzal, Oleg Safir, Adel Alhalawani, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Wire cerclage remains the standard method of care for sternal fixation, following median sternotomy, despite being beset with complications. An emerging treatment option has been to augment the wires with an adhesive. A patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) has been used to formulate GPC+, a glass polyalkenoate cement (GPC), by mixing it with poly(acrylic) acid (PAA) and de-ionized water. In a human cadaver study, this material, when applied with wire cerclage, was able to significantly reduce sternal instability. However, the material has yet to be tested in pertinent animal models. Here, after a series …


Bone Cement As A Local Chemotherapeutic Drug Delivery Carrier In Orthopedic Oncology: A Review, Sunjeev S. Phull, Alireza Rahimnejad Yazdi, Michelle Ghert, Mark R. Towler Feb 2021

Bone Cement As A Local Chemotherapeutic Drug Delivery Carrier In Orthopedic Oncology: A Review, Sunjeev S. Phull, Alireza Rahimnejad Yazdi, Michelle Ghert, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Metastatic bone lesions are common among patients with advanced cancers. While chemotherapy and radiotherapy may be prescribed immediately after diagnosis, the majority of severe metastatic bone lesions are treated by reconstructive surgery, which, in some cases, is followed by postoperative radiotherapy or chemotherapy. However, despite recent advancements in orthopedic surgery, patients undergoing reconstruction still have the risk of developing severe complications such as tumor recurrence and reconstruction failure. This has led to the introduction and evaluation of poly (methyl methacrylate) and inorganic bone cements as local carriers for chemotherapeutic drugs (usually, antineoplastic drugs (ANPDs)). The present work is a critical …


In Vitro Evaluation Of Novel Titania-Containing Borate Bioactive Glass Scaffolds, Romina Shafaghi, Omar Rodriguez, Anthony W. Wren, Loraine Chiu, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler Feb 2021

In Vitro Evaluation Of Novel Titania-Containing Borate Bioactive Glass Scaffolds, Romina Shafaghi, Omar Rodriguez, Anthony W. Wren, Loraine Chiu, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Titanium-containing borate bioactive glass scaffolds (0, 5, 15, and 20 mol %, identified as BRT0, BRT1, BRT3, and BRT4) with a microstructure similar to that of human trabecular bone were prepared and evaluated in vitro for potential bone loss applications in revision total knee arthroplasty (rTKA). Methyl thiazolyl tetrazolium (MTT) cell viability assays of scaffold ion release extracts revealed that BRT0 scaffolds (0 mol % titanium) inhibited cell proliferation and activity at day 14. At day 30, all scaffold extracts decreased cell proliferation and activity significantly. However, live/dead cell assay results demonstrated that degradation products from all the scaffolds had …