Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Static Force Analysis Of A Porcine Mitral Valve To Determine Self-Supporting Capabilities Of The Leaflets, Jacob Paris May 2021

Static Force Analysis Of A Porcine Mitral Valve To Determine Self-Supporting Capabilities Of The Leaflets, Jacob Paris

Biomedical Engineering Undergraduate Honors Theses

The mitral valve (MV) is responsible for controlling the flow between the left atrium (LA) and left ventricle (LV). This includes maintaining valve closure under high systolic pressures. Mitral regurgitation (MR) occurs when the valve fails to completely close and blood flows in the reverse direction, from the LV to the LA, during ejection. This type of valvular heart disease is prevalent among elderly individuals and is becoming increasingly common as the population ages. In order to better understand how to properly treat this large group of affected individuals, the mechanics of the MV during high systolic pressures must be …


Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue May 2019

Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue

Biomedical Engineering Undergraduate Honors Theses

In the field of bedside cardiac diagnostic imaging, Doppler Ultrasound (DU) is the gold standard for diagnosing heart conditions. The largest benefit of DU is its ability to noninvasively image cardiac flow and allow the estimation of blood velocity and quantification of anatomical disease. However, to get correct velocity estimation, the position of the transducer in relation to the flow field needs to be known. This is the problem of angle/direction dependency and limits DUs accuracy when imaging in areas where perfect alignment or exact position of the transducer in relation to flow field is not possible or known, such …