Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Increasing Production Of Therapeutic Mabs In Cho Cells Through Genetic Engineering, Charles Barentine Dec 2022

Increasing Production Of Therapeutic Mabs In Cho Cells Through Genetic Engineering, Charles Barentine

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Between 2014 and 2018, the global market for therapeutic monoclonal antibodies (mAbs) rose from $60 billion to $115.2 billion with a projected value of $300 billion by 2025. These molecules are used to effectively treat some of the most challenging illnesses from auto-immune diseases to cancer. While mAbs are highly valuable with potent applications, their production at scale remains an outstanding challenge. These molecules are largely produced in Chinese Hamster Ovary (CHO) cells that require highly specific conditions to produce a useful product.

Genetic engineering presents one solution to overcome productivity limits. With the advent of CRISPR (clustered regularly interspaced …


Low Resource Assay For Tracking Sars-Cov-2 In Wastewater, Julissa Van Renselaar Dec 2022

Low Resource Assay For Tracking Sars-Cov-2 In Wastewater, Julissa Van Renselaar

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Wastewater based epidemiology (WBE) allows for the tracking of nucleic acid of SARS-CoV-2 in wastewater which gives the opportunity for the public and government officials to be informed about the infectivity of the virus in a community. Advances have been made in WBE that have allowed for higher performance, lower resource use, and faster turnaround time. An adapted concentration method of spin column direct extraction has yielded a proxy virus recovery of 83%, consumable cost of $2.01 per sample, and a turnaround time of 0.33 hour/sample. Other concentration methods have lower proxy virus recoveries, comparable cost, and comparable turnaround time. …


Upstream Methods For Enhancing Engineered Curcumin Biosynthesis, Caleb D. Barton Aug 2022

Upstream Methods For Enhancing Engineered Curcumin Biosynthesis, Caleb D. Barton

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Curcumin is a bright orange compound with myriad applications for human health and wellness. Curcumin occurs naturally in the plant Curcuma longa (commonly known as turmeric) but must be extracted from the roots in an environmentally unfriendly fashion to obtain commercially relevant amounts of the compound. In addition, extraction of curcumin from turmeric spice yields a mixture of various curcuminoids, presenting an issue for isolating it in its pure form and complicating its use in clinical settings.

Heterologous biosynthetic production of curcumin in Escherichia coli has been used extensively as a viable alternative to plant extraction but suffers from poor …


What Drug Candidates Exist For Treating Covid-19 Variants?, Kolton Hauck Feb 2022

What Drug Candidates Exist For Treating Covid-19 Variants?, Kolton Hauck

Research on Capitol Hill

USU senior Kolton studies biological engineering and led this project with funding from a student grant. Kolton’s project has been mapping out all possible protein interactions from known SARS-CoV-2 variants and identifying possible drug treatments. Viruses function through these interactions between their proteins and the host cell’s proteins, and this project is especially valuable because the candidates identified are predicted to help treat all known variants, making them more likely to be effective against future mutations.Kolton’s interest in biological research stems from his own experience managing a genetic health disorder. Past medical research greatly benefited him, and he sees his …


Utilizing Nasa-Funded Biotechnology To Improve Resource Management On Earth And In Space, Tyler Wallentine Feb 2022

Utilizing Nasa-Funded Biotechnology To Improve Resource Management On Earth And In Space, Tyler Wallentine

Research on Capitol Hill

USU senior Tyler is a Peak Summer Research Fellow studying biological engineering. Nitrogen, essential in soil fertilizer for crops, is produced traditionally in a way that uses natural gas and produces CO2. Tyler’s project has been to apply methods developed by NASA for astronauts to conserve and reuse resources to create nitrogen using wastewater and bacteria. Using this method would not only take advantage of waste we already have, but doesn’t produce CO2 and contribute to pollution. Tyler hopes to become a chemical engineer in the space industry and credits his undergraduate research experience. “There’s something about having to obtain …


Can Cannibinoids Be Used To Prevent Lung Damage From Utah Air Pollution?, Emily Brothersen Feb 2022

Can Cannibinoids Be Used To Prevent Lung Damage From Utah Air Pollution?, Emily Brothersen

Research on Capitol Hill

USU senior Emily, a Mantua native, is an Honors student and Undergraduate Research Fellow. She studies Biological Engineering and has funded and led this project herself with multiple student grants. Emily has been investigating a way to study cell health that can help future researchers test treatments more quickly and affordably. She has used this method to research the potential of cannabinoids to help protect people from lung damage caused by pollution, an issue topical to Utah with our frequent inversions and growing medical cannabis industry. Emily has been involved in research throughout her time at USU and sees it …


Identification Of A Novel Glucuronyltransferase From Streptomyces Chromofuscus Atcc 49982 For Patural Product Glucuronidation, Jie Ren, Caleb Don Barton, Kathryn Eternity Sorenson, Jixun Zhan Jan 2022

Identification Of A Novel Glucuronyltransferase From Streptomyces Chromofuscus Atcc 49982 For Patural Product Glucuronidation, Jie Ren, Caleb Don Barton, Kathryn Eternity Sorenson, Jixun Zhan

Biological Engineering Faculty Publications

Glycosylation is an effective way to increase the polarity of natural products. UDP-glucuronyltransferases (UGTs) are commonly observed and extensively studied in phase II drug metabolism. However, UGTs in microorganisms are not well studied, which hampered the utilization of this type of enzyme in microbial glucuronidation of natural products. Screening of five actinomycete strains showed that Streptomyces chromofuscus ATCC 49982 can convert diverse plant polyphenols into more polar products, which were characterized as various glucuronides based on their spectral data. Analysis of the genome of this strain revealed a putative glucuronidation gene cluster that contains a UGT gene (gcaC) …


Assessing Leachable Cytotoxicity Of 3d-Printed Polymers And Facile Detoxification Methods, Venkatakrishnan Rengarajan, Angela Clyde, Jefferson Pontsler, Jonathan Valiente, Adreann Peel, Yu Huang Jan 2022

Assessing Leachable Cytotoxicity Of 3d-Printed Polymers And Facile Detoxification Methods, Venkatakrishnan Rengarajan, Angela Clyde, Jefferson Pontsler, Jonathan Valiente, Adreann Peel, Yu Huang

Biological Engineering Faculty Publications

Additive manufacturing of polymers is gaining momentum in health care industries by providing rapid 3D printing of customizable designs. Yet, little is explored about the cytotoxicity of leachable toxins that the 3D printing process introduced into the final product. We studied three printable materials, which have various mechanical properties and are widely used in stereolithography 3D printing. We evaluated the cytotoxicity of these materials through exposing two fibroblast cell lines (human and mouse derived) to the 3D-printed parts, using overlay indirect contact assays. All the 3D-printed parts were measured toxic to the cells in a leachable manner, with flexible materials …