Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Massachusetts Amherst

2022

Discipline
Keyword
Publication

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia Oct 2022

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia

Doctoral Dissertations

Research studies show that sleep deprivation causes severe fatigue, impairs attention and decision making, and affects our emotional interpretation of events, which makes it a big threat to public safety, and mental and physical well-being. Hence, it would be most desired if we could continuously measure one’s drowsiness and fatigue level, their emotion while making decisions, and assess their sleep quality in order to provide personalized feedback or actionable behavioral suggestions to modulate sleep pattern and alertness levels with the aim of enhancing performance, well-being, and quality of life. While there have been decades of studies on wearable devices, we …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Extracellular Matrix Stiffness As A Cue To Shape Phenotypic Evolution Of Triple Negative Breast Cancer, Ning-Hsuan Tseng Jun 2022

Extracellular Matrix Stiffness As A Cue To Shape Phenotypic Evolution Of Triple Negative Breast Cancer, Ning-Hsuan Tseng

Doctoral Dissertations

Accumulation of epigenetic and genetic changes results in oncogenic transformation of epithelial cells. During breast cancer metastasis, while the extracellular matrix (ECM) becomes stiffer, breast cancer cells transmit mechanical forces into intracellular tension and activate signaling pathways influencing growth, migration, and metastasis. Once cancer cells detach from the primary tumor, they intravasate into the vasculature, survive in the circulation, extravasate and adapt to a new microenvironment of a secondary site. Throughout the process, only a very small population of cancer cells survive, and they are likely to reside at the metastatic sites for several years. The most frequent metastatic sites …


Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park Jun 2022

Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park

Doctoral Dissertations

Osteoporosis is the most common skeletal disorder that thins and weakens the bones, yet the detailed mechanisms remain poorly understood and limited therapeutic options are available. This can be attributed to the lack of relevant experimental models that can recapitulate the bone complexity and bone remodeling. Mouse models have identified many critical genes and molecules regulating bone metabolism but are limited to studying detailed cellular and molecular processes due to anatomical inaccessibility and restricted ability to manipulate bone structure. Considerable efforts have been made to generate physiologically relevant models by using synthetic and biomaterial-based 3D scaffolds. However, there are no …


The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Controlled Codelivery Of Mir-26a And Antagomir-133a With Osteoconductive Scaffolds To Promote Healing Of Large Bone Defects, Cole J. Ferreira Mar 2022

Controlled Codelivery Of Mir-26a And Antagomir-133a With Osteoconductive Scaffolds To Promote Healing Of Large Bone Defects, Cole J. Ferreira

Masters Theses

Often caused by trauma or tumor removal, large bone defects frequently result in delayed or non-union. The current gold standard for treatment is autograft. However, due to limitations, such as the size and location of the defect, these cannot always be utilized. A common alternative to autograft is the use of BMP-2 with a collagen scaffold, however, this treatment is limited by numerous side effects. In recent years, genetic materials such as microRNAs (miRNAs) have offered possible alternative therapies. MiRNAs are small non-coding RNA molecules that generally range from 20-24 nucleotides, serve as repressors of gene expression, and are involved …