Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

The Effect Of Slow Strain Rate Tension And Cyclic Loading On Biodegradable Zn–2%Fe–0.8%Mn Alloy In A Simulated Physiological Environment, Lital Ben Tzion-Mottye, Adi Bahar, Tomer Ron, Galit Katarivas Levy, Jeremy Goldman, Dan Eliezer, Eli Aghion Sep 2023

The Effect Of Slow Strain Rate Tension And Cyclic Loading On Biodegradable Zn–2%Fe–0.8%Mn Alloy In A Simulated Physiological Environment, Lital Ben Tzion-Mottye, Adi Bahar, Tomer Ron, Galit Katarivas Levy, Jeremy Goldman, Dan Eliezer, Eli Aghion

Michigan Tech Publications, Part 2

Zinc-based alloys have gained increased interest as biodegradable structural materials for medical applications due to their adequate biocompatibility, crucial roles in many physiological functions and attractive antibacterial properties. However, the major drawbacks of zinc alloys relate to their inadequate mechanical properties and tendency to provoke fibrous encapsulation due to relatively high standard potential. Based on the promising effect of Mn on properties of Zn-based alloys, the present study aimed at evaluating the suitability of Zn–2%Fe–0.8%Mn alloy as a potential biodegradable implant under in-vitro conditions. This evaluation focused on the passivation characteristics as determined by cyclic potentiodynamic polarization analysis, immersion test, …


Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion Jan 2022

Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion

Michigan Tech Publications

Due to the excellent biocompatibility of Zn and Zn-based alloys, researchers have shown great interest in developing biodegradable implants based on zinc. Furthermore, zinc is an essential component of many enzymes and proteins. The human body requires ~15 mg of Zn per day, and there is minimal concern for systemic toxicity from a small zinc-based cardiovascular implant, such as an arterial stent. However, biodegradable Zn-based implants have been shown to provoke local fibrous encapsulation reactions that may isolate the implant from its surrounding environment and interfere with implant function. The development of biodegradable implants made from Zn-Fe-Ca alloy was designed …


Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart Dec 2021

Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart

Michigan Tech Publications

Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc's differential effects on rat aortic smooth muscle (RASMC) versus …


Degradable Zinc Material Characteristics And Its Influence On Biocompatibility In An In-Vivo Murine Model, Roger J. Guillory Ii Jan 2019

Degradable Zinc Material Characteristics And Its Influence On Biocompatibility In An In-Vivo Murine Model, Roger J. Guillory Ii

Dissertations, Master's Theses and Master's Reports

Biodegradable stents based on zinc have been under development since their introduction in 2013. While metallic zinc is highly ductile, it unfortunately lacks the mechanical strength required for arterial stents. This has led to the development of an abundance of novel zinc-based materials, with the aim of improving the mechanical strength without sacrificing too much ductility. Although these materials are intended to function and slowly degrade within an artery, most zinc-based materials have been developed without deep consideration for their biological effects.

The present work explores the biological effects elicited by zinc-based materials implanted within the arterial system. The biological …


The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion Jun 2018

The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion

Michigan Tech Publications

Mg based implants are limited by their poor strength, ductility, and corrosion performance in physiological environments, drawbacks further compounded by their premature loss of mechanical integrity and evolution of harmful hydrogen gas. Neodymium additions to magnesium have been shown to improve mechanical properties through precipitation and solid solution hardening. Therefore, the present study incorporated Nd additions (up to 3%) into a promising Mg-5%Zn-0.13%Y-0.35%Zr alloy to improve mechanical properties and corrosion resistance. The microstructure evaluation of a series of alloys was performed using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The mechanical properties were examined in terms of …


The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion Feb 2018

The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion

Michigan Tech Publications

Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting …


The Prospects Of Zinc As A Structural Material For Biodegradable Implants—A Review Paper, Galit Katarivas Levy, Jeremy Goldman, Eli Aghion Oct 2017

The Prospects Of Zinc As A Structural Material For Biodegradable Implants—A Review Paper, Galit Katarivas Levy, Jeremy Goldman, Eli Aghion

Michigan Tech Publications

In the last decade, iron and magnesium, both pure and alloyed, have been extensively studied as potential biodegradable metals for medical applications. However, broad experience with these material systems has uncovered critical limitations in terms of their suitability for clinical applications. Recently, zinc and zinc-based alloys have been proposed as new additions to the list of degradable metals and as promising alternatives to magnesium and iron. The main byproduct of zinc metal corrosion, Zn2+, is highly regulated within physiological systems and plays a critical role in numerous fundamental cellular processes. Zn2+ released from an implant may suppress …