Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigative Study On Nitric Oxide Production In Human Dermal Fibroblast Cells Under Normal And High Glucose Conditions, Maria Paula Kwesiga, Emily Cook, Jennifer Hannon, Sarah Wayward, Caroline Gwaltney, Smitha Rao, Megan C. Frost Nov 2018

Investigative Study On Nitric Oxide Production In Human Dermal Fibroblast Cells Under Normal And High Glucose Conditions, Maria Paula Kwesiga, Emily Cook, Jennifer Hannon, Sarah Wayward, Caroline Gwaltney, Smitha Rao, Megan C. Frost

Michigan Tech Publications

Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time …


Fall 2018 Biomedical Engineering Newsletter, Department Of Biomedical Engineering, Michigan Technological University Oct 2018

Fall 2018 Biomedical Engineering Newsletter, Department Of Biomedical Engineering, Michigan Technological University

Department of Biomedical Engineering Newsletters

Table of Contents

  • Global Research, Local Impact: Keat Ghee Ong
  • Mechanobiology: Sangyoon Han Measures Cellular Force
  • Rupak Rajachar Accelerates Healing in Humans - and Whales
  • Optical Elastography Gathers Better Data for Avon
  • Making Stents: NSF Graduate Research Fellow Roger Guillory


Synthesis And Characterization Of Controlled Nitric Oxide Release From S-Nitroso-N-Acetyl-D-Penicillamine Covalently Linked To Polyvinyl Chloride (Snap-Pvc), Sean Hopkins, Megan C. Frost Sep 2018

Synthesis And Characterization Of Controlled Nitric Oxide Release From S-Nitroso-N-Acetyl-D-Penicillamine Covalently Linked To Polyvinyl Chloride (Snap-Pvc), Sean Hopkins, Megan C. Frost

Michigan Tech Publications

Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor biocompatibility when in contact with tissue or blood. To increase biocompatibility, controlled release of nitric oxide (NO) can be utilized to mitigate and reduce the inflammatory response. A synthetic route is described where PVC is aminated to a specified degree and then further modified by covalently linking S-nitroso-N-acetyl-d-penicillamine (SNAP) groups to the free primary amine sites to create a nitric oxide releasing polymer (SNAP-PVC). Controllable release of NO from SNAP-PVC is described using photoinitiation from light emitting diodes (LEDs). Ion-mediated NO release is …


Incorporation Of Anionic Monomer To Tune The Reversible Catechol-Boronate Complex For Ph Responsive, Reversible Adhesion, Ameya R. Narkar, Bruce P. Lee Jul 2018

Incorporation Of Anionic Monomer To Tune The Reversible Catechol-Boronate Complex For Ph Responsive, Reversible Adhesion, Ameya R. Narkar, Bruce P. Lee

Department of Biomedical Engineering Publications

Up to 30 mol% of acrylic acid (AAc) was incorporated into a pH responsive smart adhesive consisting of dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (APBA). FTIR spectroscopy and rheometry confirmed that the incorporation of AAc shifted the pH of catechol-boronate complexation to a more basic pH. Correspondingly, adhesive formulations with elevated AAc contents demonstrated strong adhesion to quartz substrate at a neutral to mildly basic pH (pH 7.5-8.5) based on Johnson-Kendall-Roberts (JKR) contact mechanics test. When pH was further increased to pH 9.0, there was a drastic reduction in the measured work of adhesion (18 and 7 fold reduction …


The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion Jun 2018

The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion

Michigan Tech Publications

Mg based implants are limited by their poor strength, ductility, and corrosion performance in physiological environments, drawbacks further compounded by their premature loss of mechanical integrity and evolution of harmful hydrogen gas. Neodymium additions to magnesium have been shown to improve mechanical properties through precipitation and solid solution hardening. Therefore, the present study incorporated Nd additions (up to 3%) into a promising Mg-5%Zn-0.13%Y-0.35%Zr alloy to improve mechanical properties and corrosion resistance. The microstructure evaluation of a series of alloys was performed using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The mechanical properties were examined in terms of …


Bioactive Polydimethylsiloxane Surface For Optimal Human Mesenchymal Stem Cell Sheet Culture, Zichen Qian, David Ross, Wenkai Jia, Qi Xing, Feng Zhao Jun 2018

Bioactive Polydimethylsiloxane Surface For Optimal Human Mesenchymal Stem Cell Sheet Culture, Zichen Qian, David Ross, Wenkai Jia, Qi Xing, Feng Zhao

Michigan Tech Publications

Human mesenchymal stem cell (hMSC) sheets hold great potential in engineering three-dimensional (3D) completely biological tissues for diverse applications. Conventional cell sheet culturing methods employing thermoresponsive surfaces are cost ineffective, and rely heavily on available facilities. In this study, a cost-effective method of layer-by-layer grafting was utilized for covalently binding a homogenous collagen I layer on a commonly used polydimethylsiloxane (PDMS) substrate surface in order to improve its cell adhesion as well as the uniformity of the resulting hMSC cell sheet. Results showed that a homogenous collagen I layer was obtained via this grafting method, which improved hMSC adhesion and …


Application Of Composite Hydrogels To Control Physical Properties In Tissue Engineering And Regenerative Medicine, Cassidy Sheffield, Kaylee Meyers, Emil Johnson, Rupak Rajachar May 2018

Application Of Composite Hydrogels To Control Physical Properties In Tissue Engineering And Regenerative Medicine, Cassidy Sheffield, Kaylee Meyers, Emil Johnson, Rupak Rajachar

Michigan Tech Publications

The development of biomaterials for the restoration of the normal tissue structure–function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in …


Recent Developments In Tough Hydrogels For Biomedical Applications, Yuan Liu, Weilue He, Zhongtian Zhang, Bruce P. Lee May 2018

Recent Developments In Tough Hydrogels For Biomedical Applications, Yuan Liu, Weilue He, Zhongtian Zhang, Bruce P. Lee

Department of Biomedical Engineering Publications

A hydrogel is a three-dimensional polymer network with high water content and has been attractive for many biomedical applications due to its excellent biocompatibility. However, classic hydrogels are mechanically weak and unsuitable for most physiological load-bearing situations. Thus, the development of tough hydrogels used in the biomedical field becomes critical. This work reviews various strategies to fabricate tough hydrogels with the introduction of non-covalent bonds and the construction of stretchable polymer networks and interpenetrated networks, such as the so-called double-network hydrogel. Additionally, the design of tough hydrogels for tissue adhesive, tissue engineering, and soft actuators is reviewed.


Metabolism-Driven High-Throughput Cancer Identification With Glut5-Specific Molecular Probes, Srinivas Kannan, Vagarshak Begoyan, Joseph Fedie, Shuai Xia, Łukasz J. Weseliński, Marina Tanasova, Smitha Rao Apr 2018

Metabolism-Driven High-Throughput Cancer Identification With Glut5-Specific Molecular Probes, Srinivas Kannan, Vagarshak Begoyan, Joseph Fedie, Shuai Xia, Łukasz J. Weseliński, Marina Tanasova, Smitha Rao

Michigan Tech Publications

Point-of-care applications rely on biomedical sensors to enable rapid detection with high sensitivity and selectivity. Despite advances in sensor development, there are challenges in cancer diagnostics. Detection of biomarkers, cell receptors, circulating tumor cells, gene identification, and fluorescent tagging are time-consuming due to the sample preparation and response time involved. Here, we present a novel approach to target the enhanced metabolism in breast cancers for rapid detection using fluorescent imaging. Fluorescent analogs of fructose target the fructose-specific transporter GLUT5 in breast cancers and have limited to no response from normal cells. These analogs demonstrate a marked difference in adenocarcinoma and …


The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion Feb 2018

The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion

Michigan Tech Publications

Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting …


No-Releasing Polymers And Uses Thereof, Megan C. Frost, Genevieve Romanowicz Feb 2018

No-Releasing Polymers And Uses Thereof, Megan C. Frost, Genevieve Romanowicz

Michigan Tech Patents

The present invention provides stable, photosensitive polymers that release NO response to intensity and wavelength of light, methods of making such polymers and methods using such polymers.


Reversibly Switching Adhesion Of Smart Adhesives Inspired By Mussel Adhesive Chemistry, Ameya R. Narkar Jan 2018

Reversibly Switching Adhesion Of Smart Adhesives Inspired By Mussel Adhesive Chemistry, Ameya R. Narkar

Dissertations, Master's Theses and Master's Reports

Catecholic groups in mussel adhesive proteins transition from being strongly adhesive in a reduced state under acidic conditions to being weakly adhesive in an oxidized state under basic conditions. Here, we exploit this pH responsive behavior of catechol and demonstrate that its oxidation state can be manipulated by incorporation of boronic acid to facilitate reversible transitions between strong and weak adhesion. Our first approach involved the addition of 3- acrylamido phenylboronic acid (APBA) to dopamine methacrylamide (DMA) containing adhesives. The synthesized adhesives showed strong adhesion to quartz surface in an acidic medium (pH 3), while weak adhesion was observed on …


An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal Jan 2018

An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal

Dissertations, Master's Theses and Master's Reports

After injury, wound healing is a complex sequential cascade of events essential for the proper recovery of the wound without the scar formation. Nitric oxide (NO) is a small, endogenous free-radical gas with antimicrobial, vasodilating and growth factor stimulating properties. NO has wide biomedical application especially in wound healing however, its usability is hindered due its administration problem as it is highly unstable.

In this work, poly (l-lactic acid) microparticles encapsulated with NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) were prepared using water-in-oil-water double emulsion solvent evaporation method for controlled delivery for NO at the specific site. The NO release from SNAP-PLLA microparticles …


Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang Jan 2018

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang

Dissertations, Master's Theses and Master's Reports

In this research, the degradable polymer 4-arm poly (ethylene glycol)-glutaric acid-dopamine (PEG-GA-DM4) was synthesized. The degradation behavior of crosslinked PEG-GA-DM4 bioadhesive was studied with mass tracking, oscillatory rheology, and magnetoelastic (ME) sensors. Changes in mechanical properties were correlated with both dry mass and wet mass changes during the degradation. The results indicate that the loss of mechanical property in the bioadhesive can take place without losing the dry mass. The mass loss profile cannot describe the degradation behavior completely. In addition to studying the degradation of PEG-GA-DM4, this research also confirms the application of ME …


A Bluetooth Low-Energy Wireless Sensor Platform For Continuous Monitoring Of A Bioreactor Environment During Cell Manufacturing, Brad Nelson Jan 2018

A Bluetooth Low-Energy Wireless Sensor Platform For Continuous Monitoring Of A Bioreactor Environment During Cell Manufacturing, Brad Nelson

Dissertations, Master's Theses and Master's Reports

A wireless sensor platform based on Bluetooth Low-Energy (BLE) technology was designed and prototyped for continuous monitoring of physical conditions and chemical analytes, which could be applied to bioreactors during the cell manufacturing process. Controlling environmental conditions such as pH, oxygen, glucose, temperature, and pressure is vital to ensure the consistency of the manufactured cells and maintain the potency of the product. Current methods to control bioreactor conditions focus only on monitoring the cell culture environment during cell growth, but there is a lack of direct quantification of cell properties to provide an integrated feedback system that can also maintain …