Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of An In Vitro 3-Dimensional Co-Culture Human Colorectal Cancer Model In Microfluidic Devices, Abby Jens Mar 2024

Development Of An In Vitro 3-Dimensional Co-Culture Human Colorectal Cancer Model In Microfluidic Devices, Abby Jens

Master's Theses

Colorectal cancer is the second most common cause of cancer-related deaths in the United States, with the relative 5-year survival rate for distant stage cancer being only 14%. The most common treatment for colorectal cancer is with chemotherapeutic drugs; however, the discovery of these drugs is costly, time-consuming, and often requires the use of animal models that do not yield results that translate to clinical trials. Due to these shortcomings, researchers seek to develop physiologically relevant in vitro tumor models that more accurately mimic the tumor microenvironment for cheaper and faster high-throughput drug screening. The aim of this research was …


Comparison Of Scanning Electron Microscopy And Confocal Laser Microscopy For Tissue Surface Roughness Characterization, Tarnvir Dhaliwal Mar 2024

Comparison Of Scanning Electron Microscopy And Confocal Laser Microscopy For Tissue Surface Roughness Characterization, Tarnvir Dhaliwal

Master's Theses

It was found that the measurements captured by confocal microscopy and scanning electron microscopy had a statistically significant difference for bovine tissue. There was not a statistically significant for porcine and poultry tissue.

The intent of the study is to perform a comparative study to examine efficacy of two distinct technologies for a singular purpose: tissue surface roughness characterization. The two technologies compared are a confocal reflectance microscope and a scanning electron microscope. The comparison was made by comparing two surface roughness parameters [Ra and Rq] within ImageJ.

The study examined three different animal species [porcine, bovine, and poultry] to …


Neonatal Respiratory Therapy Interface, Kennedy Austin, Evan Manley, Parker Murray, Harrison Oen Mar 2024

Neonatal Respiratory Therapy Interface, Kennedy Austin, Evan Manley, Parker Murray, Harrison Oen

Biomedical Engineering

This Final Report reviews and outlines the scope, objectives, and deliverables for the BCPAP Interface Redesign project, aimed at enhancing the functionality, usability, and patient experience of the existing BCPAP interface. It also includes detailed testing results and manufacturing plans for the device prototype. The current system has challenges in universal usability, time constraints, and patient comfort, which this project intends to address effectively. The goal of this project is to reevaluate and redesign the interface of the bubble continuous positive air pressure (BCPAP) machine’s attachment site with the infant. Due to the millions of premature neonates and thousands of …


Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain Mar 2024

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain

Master's Theses

Total ankle replacement (TAR) implants are an effective option to restore the range of motion of the ankle joint for arthritic patients. An effective tool for analyzing these implants’ mechanical performance and longevity in-silico is finite element analysis (FEA). ABAQUS FEA was used to statically analyze the von Mises stress and contact pressure on the articulating surface of the bearing component in two newly installed fixed-bearing total ankle replacement implants (the Wright Medical INBONE II and the Exactech Vantage). This bearing component rotates on the talar component to induce primary ankle joint motion of plantarflexion and dorsiflexion. The stress response …


Auto Adjustable Flow Regulator, Ethan Hemmerlin, Jack Dooley Mar 2024

Auto Adjustable Flow Regulator, Ethan Hemmerlin, Jack Dooley

Biomedical Engineering

The Auto-Adjustable Oxygen Flowmeter device is to be used in conjunction with an oxygen source or reservoir, as well as a low-flow nasal cannula apparatus. The device is applicable for patients requiring an oxygen flow rate of 0-6 L/min. Further, the device works to maintain a healthy blood-oxygen concentration of 90-94% for typical patients, as well as an 88-92% range for COPD patients who are chronic CO2 retainers. A reflective pulse oximeter will record the SpO2 concentration of the patient. The outputted SpO2 concentration will be transmitted to an internal processing PCB from which it will interact with the oxygen …


Assisted Delivery Device, Rachel Rowe, Madeliene Mumford, Jenna Eissmann, Brittany Trinh Mar 2024

Assisted Delivery Device, Rachel Rowe, Madeliene Mumford, Jenna Eissmann, Brittany Trinh

Biomedical Engineering

Current devices used to assist in complicated births present serious risks to both the mother and the fetus, which has caused a decline in the use of these devices over the last decade. This senior project team has proposed an alternative device that interfaces with the infant’s shoulders that would decrease these risks and contribute to the decrease of unnecessary c-sections due to device inadequacy. This Statement of Work includes research on the downfalls of current devices, existing patents, customer requirements, engineering specifications, and a design plan through December of this year. The next phase of this project will include …


Tourniquet Pressure Gradient Measurement Apparatus, Luis Enrique Perez, Elsa Elizabeth Bates Mar 2024

Tourniquet Pressure Gradient Measurement Apparatus, Luis Enrique Perez, Elsa Elizabeth Bates

Biomedical Engineering

The goal of this project was to design a device that would measure pressure gradient data across the width of an elastic and inelastic tourniquet cuff using a human limb model. The main customer requirements that were focused on were to accurately measure the pressure from a tourniquet, keep the cost down, and be easy to use. The targeted design specifications were to read pressure values ranging from 0-400 mmHg, keep the test length under 5 minutes, and to keep the cost of materials under $400. The design of the device ended up consisting of 5 IV pouches that were …