Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse Dec 2010

Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse

Biomedical Engineering

The blood-brain barrier (BBB) is responsible for maintaining the sensitive environment required by the brain. Although the BBB is necessary for proper functioning of the brain, it acts as an obstacle for doctors attempting to treat neurological disease. For a drug to act upon the brain, it must first pass through the discriminating BBB. For this reason, much research has been performed in recent years in order to create an in vitro model of the BBB on which drugs targeted for the central nervous system may be tested. The main goal of this project is to create an in vitro …


Computational Vascular Fluid–Structure Interaction: Methodology And Application To Cerebral Aneurysms, Y. Bazilevs, Ming-Chen Hsu, Y. Zhang, Z. Wang, T. Kvamsdal, S. Hentschel, J. G. Isaksen Aug 2010

Computational Vascular Fluid–Structure Interaction: Methodology And Application To Cerebral Aneurysms, Y. Bazilevs, Ming-Chen Hsu, Y. Zhang, Z. Wang, T. Kvamsdal, S. Hentschel, J. G. Isaksen

Ming-Chen Hsu

A computational vascular fluid–structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid–structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.


Transgenic Rat Model Of Neurodegeneration Caused By Mutation In The Tdp Gene, Hongxia Zhou, Cao Huang, Han Chen, Dian Wang, Carlisle P. Landel, Pedro Yuxing Xia, Robert Bowser, Yong-Jian Liu, Xu Gang Xia Jan 2010

Transgenic Rat Model Of Neurodegeneration Caused By Mutation In The Tdp Gene, Hongxia Zhou, Cao Huang, Han Chen, Dian Wang, Carlisle P. Landel, Pedro Yuxing Xia, Robert Bowser, Yong-Jian Liu, Xu Gang Xia

Nebraska Center for Biotechnology: Faculty and Staff Publications

TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons …