Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Department of Biomedical Engineering

Michigan Tech Publications, Part 2

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han Feb 2024

Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han

Michigan Tech Publications, Part 2

Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction-a measure of …


Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish K. Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han Feb 2024

Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish K. Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han

Michigan Tech Publications, Part 2

Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction—a measure of …


S-Net: A Multiple Cross Aggregation Convolutional Architecture For Automatic Segmentation Of Small/Thin Structures For Cardiovascular Applications, Nan Mu, Zonghan Lyu, Mostafa Rezaeitaleshmahalleh, Cassie Bonifas, Jordan Gosnell, Marcus Haw, Joseph Vettukattil, Jingfeng Jiang Nov 2023

S-Net: A Multiple Cross Aggregation Convolutional Architecture For Automatic Segmentation Of Small/Thin Structures For Cardiovascular Applications, Nan Mu, Zonghan Lyu, Mostafa Rezaeitaleshmahalleh, Cassie Bonifas, Jordan Gosnell, Marcus Haw, Joseph Vettukattil, Jingfeng Jiang

Michigan Tech Publications, Part 2

With the success of U-Net or its variants in automatic medical image segmentation, building a fully convolutional network (FCN) based on an encoder-decoder structure has become an effective end-to-end learning approach. However, the intrinsic property of FCNs is that as the encoder deepens, higher-level features are learned, and the receptive field size of the network increases, which results in unsatisfactory performance for detecting low-level small/thin structures such as atrial walls and small arteries. To address this issue, we propose to keep the different encoding layer features at their original sizes to constrain the receptive field from increasing as the network …