Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Biomedical Engineering and Bioengineering

Design And Synthesis Of Multivalent Α-1,2-Trimannose-Linked Bioerodible Microparticles For Applications In Immune Response Studies Of Leishmania Major Infection, Chelsea L. Rintelmann, Tara Grinnage-Pulley, Kathleen Ross, Daniel E. K. Kabotso, Angela Toepp, Anne Cowell, Christine Petersen, Balaji Narasimhan, Nicola Pohl Jan 2019

Design And Synthesis Of Multivalent Α-1,2-Trimannose-Linked Bioerodible Microparticles For Applications In Immune Response Studies Of Leishmania Major Infection, Chelsea L. Rintelmann, Tara Grinnage-Pulley, Kathleen Ross, Daniel E. K. Kabotso, Angela Toepp, Anne Cowell, Christine Petersen, Balaji Narasimhan, Nicola Pohl

Chemical and Biological Engineering Publications

Leishmaniasis, a neglected tropical disease, currently infects approximately 12 million people worldwide with 1 to 2 million new cases each year in predominantly underdeveloped countries. The treatment of the disease is severely underdeveloped due to the ability of the Leishmania pathogen to evade and abate immune responses. In an effort to develop anti-leishmaniasis vaccines and adjuvants, novel carbohydrate-based probes were made to study the mechanisms of immune modulation. In this study, a new bioerodible polyanhydride microparticle was designed and conjugated with a glycodendrimer molecular probe. This molecular probe incorporates a pathogen-like multivalent display of α-1,2-trimannose, for which a more ...


Solution Of Population Balance Equations In Applications With Fine Particles: Mathematical Modeling And Numerical Schemes, Tan Trung Nguyen, Frédérique Laurent, Rodney O. Fox, Marc Massot Nov 2016

Solution Of Population Balance Equations In Applications With Fine Particles: Mathematical Modeling And Numerical Schemes, Tan Trung Nguyen, Frédérique Laurent, Rodney O. Fox, Marc Massot

Chemical and Biological Engineering Publications

The accurate description and robust simulation, at relatively low cost, of global quantities (e.g. number density or volume fraction) as well as the size distribution of a population of fine particles in a carrier fluid is still a major challenge for many applications. For this purpose, two types of methods are investigated for solving the population balance equation with aggregation, continuous particle size change (growth and size reduction), and nucleation: the extended quadrature method of moments (EQMOM) based on the work of Yuan et al.[52]and a hybrid method (TSM) between the sectional and moment methods, considering two ...


Characterization Of Sheared Colloidal Aggregation Using Langevin Dynamics Simulation, Sergiy Markutsya, Rodney O. Fox, Shankar Subramaniam Jun 2014

Characterization Of Sheared Colloidal Aggregation Using Langevin Dynamics Simulation, Sergiy Markutsya, Rodney O. Fox, Shankar Subramaniam

Chemical and Biological Engineering Publications

Aggregation of colloidal particles under shear is studied in model systems using a Langevin dynamics model with an improved interparticle interaction potential. In the absence of shear, aggregates that form are characterized by compact structure at small scales and ramified structure at larger scales. This confirms the structural crossover mechanism previously suggested by Sorensen and coworkers, that colloidal aggregation occurs due to monomer addition at small scales and due to cluster-cluster aggregation at large scales. The fractal dimension of nonsheared aggregates is scale-dependent. Smaller aggregates have a higher fractal dimension than larger ones, but the radius of gyration where this ...


Synthesis And Functionalization Of Virus-Mimicking Cationic Block Copolymers With Pathogen-Associated Carbohydrates As Potential Vaccine Adjuvants, J. R. Adams, M. Goswami, N. L.B. Pohl, Surya K. Mallapragada Mar 2014

Synthesis And Functionalization Of Virus-Mimicking Cationic Block Copolymers With Pathogen-Associated Carbohydrates As Potential Vaccine Adjuvants, J. R. Adams, M. Goswami, N. L.B. Pohl, Surya K. Mallapragada

Chemical and Biological Engineering Publications

We report the synthesis of a family of amphiphilic pentablock polymers with different cationic blocks and with controlled architectures as potential vaccine carriers for subunit vaccines. The temperature and pH-dependent micellization and gelation of these pentablock copolymers can provide a depot for sustained protein and gene delivery. The amphiphilic central triblock promotes cellular endocytosis, good gene delivery and has been used effectively as a vaccine adjuvant. The pentablock copolymer outer blocks condense DNA spontaneously as a result of electrostatic interactions for sustained combinational therapy. This family of polymers with different cationic groups was evaluated based on DNA complexation-ability and cytotoxicity ...


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jan 2013

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Chemical and Biological Engineering Publications

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer ...


Evaluation Of Coarse-Grained Mapping Schemes For Polysaccharide Chains In Cellulose, Sergiy Markutsya, Ajitha Devarajan, John Ysrael Baluyut, Theresa Lynn Windus, Mark S. Gordon, Monica H. Lamm Jan 2013

Evaluation Of Coarse-Grained Mapping Schemes For Polysaccharide Chains In Cellulose, Sergiy Markutsya, Ajitha Devarajan, John Ysrael Baluyut, Theresa Lynn Windus, Mark S. Gordon, Monica H. Lamm

Chemical and Biological Engineering Publications

A fundamental understanding of the intermolecular forces that bind polysaccharide chains together in cellulose is crucial for designing efficient methods to overcome the recalcitrance of lignocellulosic biomass to hydrolysis. Because the characteristic time and length scales for the degradation of cellulose by enzymatic hydrolysis or chemical pretreatment span orders of magnitude, it is important to closely integrate the molecular models used at each scale so that, ultimately, one may switch seamlessly between quantum, atomistic, and coarse-grained descriptions of the system. As a step towards that goal, four multiscale coarse-grained models for polysaccharide chains in a cellulose-Iα microfiber are considered. Using ...


Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna Jan 2013

Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna

Chemical and Biological Engineering Publications

Carbon materials such as carbon nanotubes (CNTs), graphene, and reduced graphene oxide (RGO) exhibit unique electrical properties, which are also influenced by the surrounding atmosphere. They are therefore promising sensing materials. Despite the existence of studies reporting the gas-sensing properties of metal oxide (MOx) coated nanostructured carbon, an incomplete understanding of their sensing mechanism remains. Here we report a systematic study on the preparation, characterization, and sensing properties of CNT and RGO composites with SnO2 coating. Atomic layer deposition (ALD) was applied to the conformal coating of the inner and outer walls of CNTs with thin films of SnO2 of ...


Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram Oct 2012

Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram

Chemical and Biological Engineering Publications

Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of ...


Metabolic Engineering Of Biocatalysts For Carboxylic Acids Production, Ping Liu, Laura R. Jarboe Oct 2012

Metabolic Engineering Of Biocatalysts For Carboxylic Acids Production, Ping Liu, Laura R. Jarboe

Chemical and Biological Engineering Publications

Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and wellperforming. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering ...


High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl Jul 2012

High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl

Chemical and Biological Engineering Publications

Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity 1. Several biodegradable polymers have been studied as vaccine delivery vehicles 1; in particular, polyanhydride particles have demonstrated the ability to provide sustained release of stable protein antigens and to activate antigen presenting cells and modulate immune responses 2-12. The molecular design of these vaccine carriers needs to integrate the rational selection of polymer properties as well as the incorporation of appropriate targeting agents ...


Dendrimer-Fullerenol Soft-Condensed Nanoassembly, Priyanka Bhattacharya, Seung Ha Kim, Pengyu Chen, Ran Chen, Anne M. Spuches, Jared M. Brown, Monica H. Lamm, Pu Chun Ke Jan 2012

Dendrimer-Fullerenol Soft-Condensed Nanoassembly, Priyanka Bhattacharya, Seung Ha Kim, Pengyu Chen, Ran Chen, Anne M. Spuches, Jared M. Brown, Monica H. Lamm, Pu Chun Ke

Chemical and Biological Engineering Publications

Nanoscale assembly is an area of research that has vast implications for molecular design, sensing, nanofabrication, supramolecular chemistry, catalysis, and environmental remediation. Here we show that poly(amidoamine) (PAMAM) dendrimers of both generations 1 (G1) and 4 (G4) can host 1 fullerenol per 2 dendrimer primary amines as evidenced by isothermal titration calorimetry, dynamic light scattering, and spectrofluorometry. Thermodynamically, the interactions were similarly spontaneous between both generations of dendrimers and fullerenols, however, G4 formed stronger complexes with fullerenols resulting from their higher surface charge density and more internal voids, as demonstrated by spectrofluorometry. In addition to hydrogen bonding that existed ...


Mannose-Functionalized "Pathogen-Like" Polyanhydride Nanoparticles Target C-Type Lectin Receptors On Dendritic Cells, Brenda Rocio Carrillo-Conde, Eun-Ho Song, Ana Vianey Chavez-Santoscoy, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Nicola L.B. Pohl, Michael J. Wannemuehler, Bryan H. Bellaire, Balaji Narasimhan Jan 2011

Mannose-Functionalized "Pathogen-Like" Polyanhydride Nanoparticles Target C-Type Lectin Receptors On Dendritic Cells, Brenda Rocio Carrillo-Conde, Eun-Ho Song, Ana Vianey Chavez-Santoscoy, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Nicola L.B. Pohl, Michael J. Wannemuehler, Bryan H. Bellaire, Balaji Narasimhan

Chemical and Biological Engineering Publications

Targeting pathogen recognition receptors on dendritic cells (DCs) offers the advantage of triggering specific signaling pathways to induce a tailored and robust immune response. In this work, we describe a novel approach to targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide "pathogen-like" properties that ensure nanoparticles engage C-type lectin receptors on DCs. The surface of polyanhydride nanoparticles was functionalized by covalent linkage of dimannose and lactose residues using an amine-carboxylic acid coupling reaction. Coculture of functionalized nanoparticles with bone marrow-derived DCs significantly increased cell surface expression of MHC II, the T cell costimulatory ...


An Algorithm For Optimally Fitting A Wiener Model, Lucas P. Beverlin, Derrick K. Rollins Sr., Nisarg Vyas, David Andre Jan 2011

An Algorithm For Optimally Fitting A Wiener Model, Lucas P. Beverlin, Derrick K. Rollins Sr., Nisarg Vyas, David Andre

Chemical and Biological Engineering Publications

The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at ...


An Extended Data Mining Method For Identifying Differentially Expressed Assay-Specific Signatures In Functional Genomic Studies, Derrick K. Rollins Sr., Ai-Ling Teh Jan 2010

An Extended Data Mining Method For Identifying Differentially Expressed Assay-Specific Signatures In Functional Genomic Studies, Derrick K. Rollins Sr., Ai-Ling Teh

Chemical and Biological Engineering Publications

Background: Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and ...


Utilizing Protein-Lean Coproducts From Corn Containing Recombinant Pharmaceutical Proteins For Ethanol Production, Ilankovan Paraman, Lorena Beatriz Moeller, M. Paul Scott, Kan Wang, Charles E. Glatz, Lawrence A. Johnson Jan 2010

Utilizing Protein-Lean Coproducts From Corn Containing Recombinant Pharmaceutical Proteins For Ethanol Production, Ilankovan Paraman, Lorena Beatriz Moeller, M. Paul Scott, Kan Wang, Charles E. Glatz, Lawrence A. Johnson

Chemical and Biological Engineering Publications

Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) andr-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich ...


Metabolic Engineering For Production Of Biorenewable Fuels And Chemicals: Contributions Of Synthetic Biology, Laura R. Jarboe, Xueli Zhang, Xuan Wang, Jonathan C. Moore, K. T. Shanmugam, Lonnie O. Ingram Jan 2010

Metabolic Engineering For Production Of Biorenewable Fuels And Chemicals: Contributions Of Synthetic Biology, Laura R. Jarboe, Xueli Zhang, Xuan Wang, Jonathan C. Moore, K. T. Shanmugam, Lonnie O. Ingram

Chemical and Biological Engineering Publications

Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemicalbased production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use ...


Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 3. Reaction Rate Constant Calculations, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox Jan 2010

Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 3. Reaction Rate Constant Calculations, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox

Chemical and Biological Engineering Publications

The rate constants for the gas-phase reactions in the silicon carbide chemical vapor deposition of methyltrichlorosilane (Ge, Y. B.; Gordon, M. S.; Battaglia, F.; Fox, R. O. J. Phys. Chem. A 2007, 111, 1462.) were calculated. Transition state theory was applied to the reactions with a well-defined transition state; canonical variational transition state theory was applied to the barrierless reactions by finding the generalized transition state with the maximum Gibbs free energy along the reaction path. Geometry optimizations were carried out with second-order perturbation theory (MP2) and the cc-pVDZ basis set. The partition functions were calculated within the harmonic oscillator ...


Sulfated Zirconia Modified Sba-15 Catalysts For Cellobiose Hydrolysis, Volkan Degirmenci, Deniz Uner, Basak Cinlar, Brent H. Shanks, Aysen Yilmaz, Rutget A. Van Santen, Emiel J. M. Hensen Jan 2010

Sulfated Zirconia Modified Sba-15 Catalysts For Cellobiose Hydrolysis, Volkan Degirmenci, Deniz Uner, Basak Cinlar, Brent H. Shanks, Aysen Yilmaz, Rutget A. Van Santen, Emiel J. M. Hensen

Chemical and Biological Engineering Publications

Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Brønsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found that the sulfate groups attached to zirconia interact with silanol groups of SBA-15. The catalytic activity in cellobiose hydrolysis correlates well with results for temperature-programmed decomposition of i-propylamine for a range of sulfated ZrO2/SBA-15 catalysts. A glucose yield of 60% during cellobiose hydrolysis at a reaction time of 90 min at 160° C is obtained.


Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 1. Thermodynamics, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox Jan 2007

Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 1. Thermodynamics, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox

Chemical and Biological Engineering Publications

Structures and energies of the gas-phase species produced during and after the various unimolecular decomposition reactions of methyltrichlorosilane (MTS) with the presence of H2 carrier gas were determined using second-order perturbation theory (MP2). Single point energies were obtained using singles + doubles coupled cluster theory, augmented by perturbative triples, CCSD(T). Partition functions were obtained using the harmonic oscillator-rigid rotor approximation. A 114-reaction mechanism is proposed to account for the gas-phase chemistry of MTS decompositions. Reaction enthalpies, entropies, and Gibbs free energies for these reactions were obtained at 11 temperatures ranging from 0 to 2000 K including room temperature and typical ...


Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 2. Reaction Paths And Transition States, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox Jan 2007

Theoretical Study Of The Pyrolysis Of Methyltrichlorosilane In The Gas Phase. 2. Reaction Paths And Transition States, Yingbin Ge, Mark S. Gordon, Francine Battaglia, Rodney O. Fox

Chemical and Biological Engineering Publications

The kinetics for the previously proposed 114-reaction mechanism for the chemical vapor deposition (CVD) process that leads from methyltrichlorosilane (MTS) to silicon carbide (SiC) are examined. Among the 114 reactions, 41 are predicted to proceed with no intervening barrier. For the remaining 73 reactions, transition states and their corresponding barrier heights have been explored using second-order perturbation theory (MP2) with the aug-cc-pVDZ basis set. Final energies for the reaction barriers were obtained using both MP2 with the aug-cc-pVTZ basis set and coupled cluster theory (CCSD(T)) with the aug-cc-pVDZ basis set. CCSD(T)/aug-cc-pVTZ energies were estimated by assuming additivity ...


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Aug 2006

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Chemical and Biological Engineering Publications

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by ...


Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jan 2006

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Chemical and Biological Engineering Publications

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was ...


Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier Jan 2005

Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Chemical and Biological Engineering Publications

Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for ...


Nanoscale Morphology Of Polyanhydride Copolymers, Matthew J. Kipper, Sheng-Shu Hou, Soenke Seifert, Papannan Thiyagarajan, Klaus Schmidt-Rohr, Balaji Narasimhan Jan 2005

Nanoscale Morphology Of Polyanhydride Copolymers, Matthew J. Kipper, Sheng-Shu Hou, Soenke Seifert, Papannan Thiyagarajan, Klaus Schmidt-Rohr, Balaji Narasimhan

Chemical and Biological Engineering Publications

The microphase separation in polyanhydride random copolymers composed of 1,6-bis(p-carboxyphenoxy)hexane and sebacic acid is described. Though the copolymers are random, the monomers are sufficiently long and the segment-segment interaction parameter is sufficiently high to promote microphase separation when the copolymer is rich in one component. Solid-state NMR spin diffusion experiments and synchrotron small-angle X-ray scattering are used to discern the length scales of the microphase separation. Both techniques reveal a nanostructure with domain sizes less than 25 Ã…. This nanostructure is compared to approximate calculations of chain dimensions based on a random coil model and discussed in ...


Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier Jan 2004

Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Chemical and Biological Engineering Publications

Considerable effort has been expended in efforts to create surfaces that resist the adsorption of proteins and cells for biomedical applications. The majority of such work has focused on surfaces constructed from bulk polymers or thin polymer films. However, the fabrication of surfaces via self-assembled monolayers (SAMs) has attracted considerable interest because of the robustness, versatility, and wide-ranging applicability of these materials. SAMs are particularly appealing for biological systems where well-defined surface chemistries can be created to facilitate coupling, biorecognition, or cell adhesion along with a host of other applications in biochemistry and biotechnology.