Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control, Jie Fei May 2023

The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control, Jie Fei

McKelvey School of Engineering Theses & Dissertations

Damage to the spinal cord causes long-lasting loss of motor and sensory function, and currently, there is no ‘cure’ for paralysis. However, even people with severe spinal cord injuries (SCI) have some residual mobility. Studies have shown that transcutaneous electrical spinal cord stimulation (tSCS) combined with functional training targeting residual mobility can further improve the motor function of individuals with SCI. In this study, we present a technical framework that aims to enhance rehabilitation outcomes by targeting residual mobility through a motor training-based approach. Our technical framework centers around a non-invasive body-machine interface (BoMI) that relies on the use of …


The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic Jan 2020

The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic

Theses and Dissertations

Neuromodulation of the primary motor cortex (M1) in pair with physical therapy may be a promising method for improving motor outcomes after spinal cord injury (SCI). Increased excitability of the corticospinal motor pathways (i.e. corticomotor excitability) has shown to be associated with improved motor learning and skill acquisition. Intermittent theta burst stimulation (iTBS) is a form of non-invasive brain stimulation which can increase corticomotor excitability, as measured by an increase in the amplitude of motor evoked potentials (MEPs). However, the ability for iTBS to increase the corticomotor excitability of proximal muscles such as the biceps, and muscles affected by spinal …