Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative Jan 2022

Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative

Publications and Research

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient’s ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current …


Towards The Discovery Of Prognostic Biomarkers For Glioblastoma Using Resting-State Functional Connectivity, Andy G. S. Daniel Aug 2021

Towards The Discovery Of Prognostic Biomarkers For Glioblastoma Using Resting-State Functional Connectivity, Andy G. S. Daniel

McKelvey School of Engineering Theses & Dissertations

Gliomas are highly diffusive, primary brain tumors. The most malignant form, glioblastoma, has a dismal survival rate: 14-17 months following the current standard of care, which consists of surgery, radiation, and chemotherapy. Insights into the molecular, cellular, and microenvironmental components of glioblastoma have revealed a vast array of factors utilized to support its proliferation, infiltration, and resistance to treatment. Recent advancements have also identified diagnostic and prognostic biomarkers that are now being used to guide treatment planning. However, survival has improved only marginally, thus emphasizing the continued need for novel biomarkers and treatment strategies. Given its delicate location in the …


Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron Jul 2021

Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron

Medical Biophysics Publications

Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than …


Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis Sep 2014

Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis

Electronic Thesis and Dissertation Repository

Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths.

First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion …