Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Approaches To Understanding The Function Of Intrinsic Activity And Its Relationship To Task-Evoked Activity In The Human Brain, Dohyun Kim May 2019

Approaches To Understanding The Function Of Intrinsic Activity And Its Relationship To Task-Evoked Activity In The Human Brain, Dohyun Kim

McKelvey School of Engineering Theses & Dissertations

Traditionally neuroscience research has focused on characterizing the topography and patterns of brain activation evoked by specific cognitive or behavioral tasks to understand human brain functions. This activation-based paradigm treated underlying spontaneous brain activity, a.k.a. intrinsic activity, as noise hence irrelevant to cognitive or behavioral functions. This view, however, has been profoundly modified by the discovery that intrinsic activity is not random, but temporally correlated at rest in widely distributed spatiotemporal patterns, so called resting state networks (RSN). Studies of temporal correlation of spontaneous activity among brain regions, or functional connectivity (FC), have yielded important insights into the network organization …


Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis Sep 2014

Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis

Electronic Thesis and Dissertation Repository

Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths.

First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion …