Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Using An Internal Auditory Stimulus To Activate The Developing Primary Auditory Cortex: A Fetal Fmri Study, Estee Goldberg Jan 2020

Using An Internal Auditory Stimulus To Activate The Developing Primary Auditory Cortex: A Fetal Fmri Study, Estee Goldberg

Electronic Thesis and Dissertation Repository

Insight into the rapidly developing brain in utero is scarce. Fetal functional magnetic resonance imaging (fMRI) is a technique used to gain awareness into the developmental process. Previous auditory task-based fMRI studies employed an external sound stimulus directly on the maternal abdomen. However, there has since been recommendation to cease doing so. We sought to investigate a reliable paradigm to study the development of fetal brain networks and postulate that by using an internal stimulus, such as the mother singing, it would result in activation of the fetal primary auditory cortex. Volunteers carrying singleton fetuses with a gestational age of …


Evaluating Devices For The Measurement Of Auditory-Evoked Fetal Movement, Patrick Gatutsi Aug 2018

Evaluating Devices For The Measurement Of Auditory-Evoked Fetal Movement, Patrick Gatutsi

Electronic Thesis and Dissertation Repository

Determining normal and abnormal fetal function in utero in order to better predict which fetuses are at risk for adverse outcome is critical. However, the medical imaging tools that could assist with diagnosis are very expensive and rarely available in the developing world. In this study, we developed a prototype audio-motio-tachograph (AMTG), which measures fetal movements through the recording of abdominal wall deformations and tested it in Rwanda. First, we showed that AMTG detected fetal signals and that fetuses respond to complex acoustic stimuli. In order to improve the sensitivity of the device, we then measured whole abdominal wall deformations …


Resting-State Functional Network Disruptions In A Rodent Model Of Mesial Temporal Lobe Epilepsy (Tle), Ravnoor Singh Gill Jan 2015

Resting-State Functional Network Disruptions In A Rodent Model Of Mesial Temporal Lobe Epilepsy (Tle), Ravnoor Singh Gill

Electronic Thesis and Dissertation Repository

Mesial temporal lobe epilepsy (TLE) is the most common form of drug-refractory epilepsy. The clinical application of non-invasively mapped networks using resting-state functional magnetic resonance imaging (rsfMRI) in humans has been rather limited due to heterogeneous (varying etiology, drugs, onset, latent period, etc.) patient groups. We employed a pharmacological (kainic acid) rodent model of TLE to measure the extent of functional network disruptions using rsfMRI, and study selected behaviors and olfactory to hippocampus transmission. Graph theoretical network modelling and analysis revealed significant increase in functional connectivity connectivity to the temporal lobe (hippocampus) in epileptic-rats compared to controls in the limbic …


Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis Sep 2014

Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis

Electronic Thesis and Dissertation Repository

Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths.

First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion …