Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty May 2019

Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty

Graduate Theses and Dissertations

The conglomeration of myriad activities in neural systems often results in prominent oscillations. The primary goal of the research presented in this thesis was to study effects of sensory stimulus on the olfactory system of rats, focusing on the olfactory bulb (OB) and the anterior piriform cortex (aPC). Extracellular electrophysiological measurements revealed distinct frequency bands of oscillations in OB and aPC. However, how these oscillatory fluctuations help the animal to process sensory input is not clearly understood. Here we show high frequency oscillations in olfactory bulb carry feedforward signals to anterior piriform cortex whereas feedback from the aPC is predominantly …


Role Of Trpv4 In Astrocyte Extracellular Matrix Production, Abby Terlouw May 2017

Role Of Trpv4 In Astrocyte Extracellular Matrix Production, Abby Terlouw

Biomedical Engineering Undergraduate Honors Theses

Traumatic Brain Injury (TBI) is an alteration of brain pathology following damage of the central nervous system (CNS) by an external force. In the CNS, glial scar formation often occurs following TBI, and astrocytes are widely believed to contribute to this scar formation. While the role of astrocytes in extracellular matrix (ECM) production is known, the exact mechanism(s) for this event remain unclear. One possible method is the activation of transient receptor potential vanilloid 4 (TRPV4). TRPV4 is a channel protein found in the astrocyte membrane which has been shown to generate intracellular calcium ions following mechanical stimulation. Previous research …


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Graduate Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of …


The Development Of A Traumatic Brain Injury Bioreactor, Zachery Heller Dec 2013

The Development Of A Traumatic Brain Injury Bioreactor, Zachery Heller

Graduate Theses and Dissertations

Approximately 1.7 million Americans experience a traumatic brain injury (TBI) each year. Concussive injuries are a subset of TBI in which blows to the head cause the brain to collide against the interior of the skull. Damage to the neurons, supporting cells, and surrounding extra cellular matrix resulting from these collisions can lead to permanent physical, cognitive, and psychological impairment. We believe the prevalence and clinical significance of concussive injures warrants research investment. To study brain injury following TBI, in vivo models have been the gold standard for TBI experiments. Although a valuable research alternative, animals are expensive, raise ethical …