Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Gold Nanorod-Mediated Photothermolysis Induces Apoptosis Of Macrophages Via Damage Of Mitochondria, Ling Tong, Ji-Xin Cheng Apr 2009

Gold Nanorod-Mediated Photothermolysis Induces Apoptosis Of Macrophages Via Damage Of Mitochondria, Ling Tong, Ji-Xin Cheng

Other Nanotechnology Publications

Aims: Induction of apoptosis or necrosis in activated macrophages by gold nanorod-mediated photothermolysis is demonstrated and the mechanisms underlying the processes are investigated. Materials & methods: Gold nanorods were functionalized with cysteine-octaarginine peptides (R8-NRs). Uptake of R8-NRs by activated macrophages was monitored by two-photon luminescence imaging. The laser irradiation conditions were controlled to induce apoptosis or necrosis to R8-NR-internalized macrophages. Mitochondrial damage and reactive oxygen species overproduction during photothermolysis was investigated by confocal fluorescence microscopy and transmission-electron microscopy. Results: Activated macrophages efficiently uptake R8-NRs both in vitro and in live animals. Laser irradiation of internalized nanorods with controlled power density …


Gold Nanorods As Contrast Agents For Biological Imaging: Optical Properties, Surface Conjugation And Photothermal Effects, Ling Tong, Qingshan Wei, Alexander Wei, Ji-Xin Cheng Jan 2009

Gold Nanorods As Contrast Agents For Biological Imaging: Optical Properties, Surface Conjugation And Photothermal Effects, Ling Tong, Qingshan Wei, Alexander Wei, Ji-Xin Cheng

Other Nanotechnology Publications

Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography or photoacoustic tomography. Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell-specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, …


Release Of Hydrophobic Molecules From Polymer Micelles Into Cell Membranes Revealed By Forster Resonance Energy Transfer Imaging, Hongtao Chen, Sungwon Kim, Shuyi Wang, Kinam Park, Ji-Xin Cheng May 2008

Release Of Hydrophobic Molecules From Polymer Micelles Into Cell Membranes Revealed By Forster Resonance Energy Transfer Imaging, Hongtao Chen, Sungwon Kim, Shuyi Wang, Kinam Park, Ji-Xin Cheng

Other Nanotechnology Publications

it is generally assumed that polymeric micelles, upon administration into the blood stream, carry drug molecules until they are taken up into cells followed by intracellular release. The current work revisits this conventional wisdom. The study using dual-labeled micelles containing fluorescently labeled copolymers and hydrophobic fluorescent probes entrapped in the polymeric micelle core showed that cellular uptake of hydrophobic probes was much faster than that of labeled copolymers. This result implies that the hydrophobic probes in the core are released from micelles in the extracellular space. Forster resonance energy transfer (FRET) imaging and spectroscopy were used to monitor this process …


Gold Nanorods Mediate Tumor Cell Death By Compromising Membrane Integrity, Ling Tong, Yan Zhao, Terry B. Huff, Matthew N. Hansen, Alexander Wei, Ji-Xin Cheng Oct 2007

Gold Nanorods Mediate Tumor Cell Death By Compromising Membrane Integrity, Ling Tong, Yan Zhao, Terry B. Huff, Matthew N. Hansen, Alexander Wei, Ji-Xin Cheng

Other Nanotechnology Publications

Folate-conjugated gold nanorods targeted to tumor cell surfaces produced severe membrane damage upon near-infrared irradiation. Photoinduced injury to the plasma membrane resulted in a rapid increase in intracellular calcium (shown in green) with subsequent disruption of the actin network, featured prominently by the formation of membrane blebs.


In Vivo Quantitation Of Rare Circulating Tumor Cells By Multiphoton Intravital Flow Cytometry, Wei He, Haifeng Wang, Lynn C. Hartmann, Ji-Xin Cheng, Phillip S. Low Jul 2007

In Vivo Quantitation Of Rare Circulating Tumor Cells By Multiphoton Intravital Flow Cytometry, Wei He, Haifeng Wang, Lynn C. Hartmann, Ji-Xin Cheng, Phillip S. Low

Other Nanotechnology Publications

Quantitation of circulating tumor cells (CTCs) constitutes an emerging tool for the diagnosis and staging of cancer, assessment of response to therapy, and evaluation of residual disease after surgery. Unfortunately, no existing technology has the sensitivity to measure the low numbers of tumor cells (< 1 CTC per ml of whole blood) that characterize minimal levels of disease. We present a method, intravital flow cytometry, that noninvasively counts rare CTCs in vivo as they flow through the peripheral vasculature. The method involves i.v. injection of a tumor-specific fluorescent ligand followed by multiphoton fluorescence imaging of superficial blood vessels to quantitate the flowing CTCs. Studies in mice with metastatic tumors demonstrate that CTCs can be quantitated weeks before metastatic disease is detected by other means. Analysis of whole blood samples from cancer patients further establishes that human CTCs can be selectively labeled and quantitated when present at approximate to 2 CTCs per ml, opening opportunities for earlier assessment of metastatic disease.


Hyperthermic Effects Of Gold Nanorods On Tumor Cells, Terry B. Huff, Ling Tong, Matthew N. Hansen, Ji-Xin Cheng, Alexander Wei Feb 2007

Hyperthermic Effects Of Gold Nanorods On Tumor Cells, Terry B. Huff, Ling Tong, Matthew N. Hansen, Ji-Xin Cheng, Alexander Wei

Other Nanotechnology Publications

Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the …


In Vitro And In Vivo Two-Photon Luminescence Imaging Of Single Gold Nanorods, Haifeng Weng, Terry B. Huff, Daniel A. Zweifel, Wei He, Philip S. Low, Alexander Wei, Ji-Xin Cheng Nov 2005

In Vitro And In Vivo Two-Photon Luminescence Imaging Of Single Gold Nanorods, Haifeng Weng, Terry B. Huff, Daniel A. Zweifel, Wei He, Philip S. Low, Alexander Wei, Ji-Xin Cheng

Other Nanotechnology Publications

Gold nanorods excited at 830 nm on a far-field laser-scanning microscope produced strong two-photon luminescence (TPL) intensities, with a cos(4) dependence on the incident polarization. The TPL excitation spectrum can be superimposed onto the longitudinal plasmon band, indicating a plasmon-enhanced two-photon absorption cross section. The TPL signal from a single nanorod is 58 times that of the two-photon fluorescence signal from a single rhodamine molecule. The application of gold nanorods as TPL imaging agents is demonstrated by in vivo imaging of single nanorods flowing in mouse ear blood vessels.