Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley Jan 2018

Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley

Legacy Theses & Dissertations (2009 - 2024)

Novel methods are needed to traverse the blood-brain barrier (BBB) and deliver drugs to specific targets in the brain. To this end, MS2 bacteriophage was explored as a multifunctional transport and targeting vector. The MS2 capsid exterior was modified with two different targeting moieties for delivery across the BBB and targeting specific regions of interest in the brain. Successful modification of MS2 capsids with a brain targeting peptide and NMDAR2D-targeting antibody was confirmed by immunoblotting and fluorescence detection. To measure transport efficiency of MS2 particles across an in vitro BBB model, a highly sensitive RT-qPCR protocol was developed and implemented. …


Detecting And Analyzing Trna Modification Systems And Homologs Using In Silico And Colorectal Cancer Models, Khadijah Onanuga Jan 2017

Detecting And Analyzing Trna Modification Systems And Homologs Using In Silico And Colorectal Cancer Models, Khadijah Onanuga

Legacy Theses & Dissertations (2009 - 2024)

tRNA modifications can be considered epitranscriptomic signaling components that regulate translation and play integral roles in stress response pathways. As such, tRNA modification enzymes have roles in cancer etiology and potential utility as biomarkers of pathological states. For my thesis project I have used computational and wet bench approaches to study tRNA modification systems. Chapter two of my thesis deals with tRNA modification detection, as current methods are costly, time consuming, and require RNA fragmentation. I present a single-molecule-based approach for RNA modification detection, which involves in slico studies using a 5-layered graphene nanopore. Our simulations using a 1.5 nm …


Nanotechnology & Human Stem Cells : Applications In Cardiogenesis And Neurogenesis, Martin Lyubomirov Tomov Jan 2016

Nanotechnology & Human Stem Cells : Applications In Cardiogenesis And Neurogenesis, Martin Lyubomirov Tomov

Legacy Theses & Dissertations (2009 - 2024)

Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. …


Comparison Of Glucose, Fructose And Sucrose Amperometric And Thermal Sensors For Detection Of Carbohydrates In Living Plant Tissue, Scott Mcadoo Jan 2015

Comparison Of Glucose, Fructose And Sucrose Amperometric And Thermal Sensors For Detection Of Carbohydrates In Living Plant Tissue, Scott Mcadoo

Legacy Theses & Dissertations (2009 - 2024)

Ecologists currently cannot test concentrations of carbohydrates in sap in vivo. Testing carbohydrates with current technology would require destructive tissue sampling. The tissue sampling involves large amounts of time and money to collect and test. Aphids are an insect that can bypass a tree’s passive immune system and feed off a phloem region for weeks. A series of enzymatic biosensors could be used to detect the concentration changes of specific carbohydrates. A calcium chelant can be added to defeat a tree’s immune system like an aphid. The detection of three carbohydrates, fructose, glucose and sucrose are involved in this study. …


Creation Of A 3d Construct To Aid Cell Migration And Promote Cell Capture, Joseph Michael Sanders Jan 2015

Creation Of A 3d Construct To Aid Cell Migration And Promote Cell Capture, Joseph Michael Sanders

Legacy Theses & Dissertations (2009 - 2024)

Most cancer-related deaths are attributed to metastasis. The tumor microenvironment is a complex environment which is not fully understood. The Nano Intravital Device (NANIVID) is a versatile, biocompatible device that allows for the manipulation of the tumor microenvironment in vitro and in vivo, providing a platform to study various aspects of tumor progression. The purpose of this study is to modify the NANIVID to resemble the tumor microenvironment in order to allow for a seamless transition from the in vivo environment into the engineered environment within the NANIVID. This engineered microenvironment will promote cell migration and cell capture. It has …


Bioengineering In Vitro Human Trabecular Meshwork Models For Glaucoma Therapeutic Screening, Karen Yud Torrejon Jan 2015

Bioengineering In Vitro Human Trabecular Meshwork Models For Glaucoma Therapeutic Screening, Karen Yud Torrejon

Legacy Theses & Dissertations (2009 - 2024)

Glaucoma refers to a group of slowly progressing eye disorders that lead to damage to the optic nerve, resulting in irreversible vision loss. Recent statistics by the World Health Organization places glaucoma as a leading cause of blindness worldwide, affecting nearly 80 million people. Lowering intraocular pressure (IOP) is currently the only effective target for therapeutic intervention in glaucoma. IOP is mostly controlled by the outflow of the aqueous humor (AH) through the trabecular meshwork (TM). The TM and adjacent endothelium of Schlemm’s canal, known as the conventional outflow-tract, control AH outflow and thus determine IOP.


Brown Adipogenesis Of Mouse Embryonic Stem Cells In Alginate Microstrands, Andrea Mannarino Unser Jan 2015

Brown Adipogenesis Of Mouse Embryonic Stem Cells In Alginate Microstrands, Andrea Mannarino Unser

Legacy Theses & Dissertations (2009 - 2024)

The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes …


Expanding Applications Of The Nano Intravital Device As A Platform For Exploring Tumor Microenvironments, Michael Padgen Jan 2014

Expanding Applications Of The Nano Intravital Device As A Platform For Exploring Tumor Microenvironments, Michael Padgen

Legacy Theses & Dissertations (2009 - 2024)

The tumor microenvironment has been demonstrated to be a key determinant in the progression of cancer. Unfortunately, the mechanisms behind the different microenvironments (cytokine gradients, hypoxia, hypoglycemia, etc) have not been fully elucidated. Identifying these mechanisms can lead to targeted, individualized therapy to prevent metastasis. The Nano Intravital Device (NANIVID) is a microfabricated, implantable device designed to initiate specific microenvironments in vivo so that the time course of the effects can be observed. With both spatial and temporal control over the induced environments, the affected regions of the tumor can be compared to the rest of the tumor. The NANIVID …


Biomacromolecule Conjugated Nanofiber Scaffold For Salivary Gland Tissue Engineering, Kavitha Jayarathanam Jan 2014

Biomacromolecule Conjugated Nanofiber Scaffold For Salivary Gland Tissue Engineering, Kavitha Jayarathanam

Legacy Theses & Dissertations (2009 - 2024)

ABSTRACT :


Probe Immobilization Strategies And Device Optimization For Novel Transistor-Based Dna Sensors, Nicholas Michael Fahrenkopf Jan 2013

Probe Immobilization Strategies And Device Optimization For Novel Transistor-Based Dna Sensors, Nicholas Michael Fahrenkopf

Legacy Theses & Dissertations (2009 - 2024)

The research presented herein exploits the terminal phosphate group on single stranded DNA molecules for direct immobilization to surfaces utilized in semiconductor device fabrication with the end goal of transistor based DNA sensors. As a demonstration of the feasibility of this immobilization strategy DNA immobilization to a variety of surfaces was evaluated for usefulness in biosensor applications. It was determined that DNA can be directly immobilized to a variety of semiconductor surfaces through the terminal phosphate group. Further, this immobilization allows for the hybridization of the immobilized DNA to complementary target in solution. The immobilization of DNA to hafnium dioxide …


Virus Capsids As Nanoscale Delivery Vessels Of Photoactive Compounds For Site-Specific Photodynamic Therapy, Brian Alexander Cohen Jan 2012

Virus Capsids As Nanoscale Delivery Vessels Of Photoactive Compounds For Site-Specific Photodynamic Therapy, Brian Alexander Cohen

Legacy Theses & Dissertations (2009 - 2024)

The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed …


Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia Jan 2012

Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia

Legacy Theses & Dissertations (2009 - 2024)

The salivary gland is a complex organ exhibiting a branching, 3-dimensional structure made up of acinar (saliva-producing), and ductal (saliva transporting and modifying) epithelial cells. The high surface area of the gland allows it to efficiently provide the mouth with saliva, maintaining oral cleanliness and comfort. Salivary gland hypofunction, a significant clinical problem often caused by the autoimmune disease Sjögren's syndrome or head and neck radiation for cancer patients, affects millions of Americans and is characterized by a loss of function of salivary gland acinar cells. Chronic xerostomia, or dry mouth, arises as a result of salivary gland hypofunction and …


Nanivid : A New Research Tool For Tissue Microenvironment Studies, Waseem Khan Raja Jan 2010

Nanivid : A New Research Tool For Tissue Microenvironment Studies, Waseem Khan Raja

Legacy Theses & Dissertations (2009 - 2024)

Metastatic tumors are heterogeneous in nature and composed of subpopulations of cells having various metastatic potentials. The time progression of a tumor creates a unique microenvironment to improve the invasion capabilities and survivability of cancer cells in different microenvironments. In the early stages of intravasation, cancer cells establish communication with other cell types through a paracrine loop and covers long distances by sensing growth factor gradients through extracellular matrices. Cellular migration both in vitro and in vivo is a complex process and to understand their motility in depth, sophisticated techniques are required to document and record events in real time. …


Continuous Glucose Monitoring Microsensor With A Nanoscale Conducting Matrix And Redox Mediator, Daniel Pesantez Jan 2009

Continuous Glucose Monitoring Microsensor With A Nanoscale Conducting Matrix And Redox Mediator, Daniel Pesantez

Legacy Theses & Dissertations (2009 - 2024)

The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) …