Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering

Drug delivery

Series

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam May 2015

Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam

Honors Scholar Theses

Hydrogels are useful in wound healing, drug delivery, and tissue engineering applications, but the available methods of injecting them quickly and noninvasively are limited. The medical industry does not yet have access to an all-purpose device that can quickly synthesize hydrogels of different shapes and sizes. Many synthesis procedures that have been developed result in the formation of amorphous hydrogels. While generally useful, amorphous hydrogels exhibit limited capability in tissue engineering applications, especially due to their viscous properties. This endeavor aims to modulate the appropriate gelation parameters, optimize the injection process, and create a prototype that allows for the extrusion …