Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Growth Plate Cartilage: Understanding The Contribution Of Adhesion To Column Formation And Matrix Structure, Sydney E. Greer May 2023

Growth Plate Cartilage: Understanding The Contribution Of Adhesion To Column Formation And Matrix Structure, Sydney E. Greer

Theses & Dissertations

Throughout fetal and adolescent development, bone growth is regulated by fine-tuned and controlled maturation of chondrocytes through a cartilaginous template called the growth plate. Bone growth rate is controlled through cell enlargement and extracellular matrix deposition, while the polarized arrangement of proliferative chondrocytes into columns aligned with the long axis of the bone potentiate growth. Chondrocytes are surrounded by a complex three-dimensional arrangement of matrix molecules, all of which are secreted by chondrocytes and assembled/remodeled to support the biological functions of the cell. Adhesion receptors found on the cell membrane of chondrocytes are crucial to the organization of matrix proteins …


The Rotator Cuff Tendon-To-Bone Interface: Maturation, Aging, And 3d Bioprinting For Regeneration, Xiping Jiang Dec 2021

The Rotator Cuff Tendon-To-Bone Interface: Maturation, Aging, And 3d Bioprinting For Regeneration, Xiping Jiang

Theses & Dissertations

Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area with a high prevalence for the elderly population. In addition, regeneration of the gradient structure of the enthesis is still a significant clinical challenge. Our studies aim to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging, and develop a novel therapeutic method using three-dimensional (3D) bioprinting technique to regenerate a functional enthesis. Striking variations of the entheses were observed both histologically and biomechanically during the maturation process. The histological features did not show many differences at the insertion site …