Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering

Washington University in St. Louis

Theses/Dissertations

2020

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily May 2020

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily

McKelvey School of Engineering Theses & Dissertations

Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on …


Toward Controlling Cardiac Tissue Pacing Using Modified Mrna, Yicheng Zhao May 2020

Toward Controlling Cardiac Tissue Pacing Using Modified Mrna, Yicheng Zhao

McKelvey School of Engineering Theses & Dissertations

Arrhythmia is a common heart disease that happens when the heart is beating too fast, too slow, or irregularly. To study the mechanisms and treatments of this disease, it is important to acutely control the beating rate of the model as it will help distinguish the contribution of different potassium currents and drug-induced action potential in cardiomyocytes. The current method of tissue pacing, electrical pacing, causes contamination and corrosive damage to tissues, thus the tissues fail to be used repeatedly or in future studies. In this study, red-shifted channelrhodopsin (ReaChR) is applied as a non-chemical means to control the beating …


Transcriptomic Analysis Of Cytokine-Treated Tissue-Engineered Cartilage As An In Vitro Model Of Osteoarthritis, Jiehan Li May 2020

Transcriptomic Analysis Of Cytokine-Treated Tissue-Engineered Cartilage As An In Vitro Model Of Osteoarthritis, Jiehan Li

McKelvey School of Engineering Theses & Dissertations

Osteoarthritis (OA), as the most common form of arthritis and a leading cause of disability worldwide, currently has no disease-modifying drugs. Inflammation plays an important role in cartilage degeneration in OA, and pro-inflammatory cytokines, IL-1β and TNF-α, have been shown to induce degradative changes along with aberrant gene expression in chondrocytes, the only resident cells in cartilage. The goal of this study was to further understand the transcriptomic regulation of tissue-engineered cartilage in response to inflammatory cytokines using an in vitro miPSC model system. We performed RNA sequencing for the IL-1β or TNF-α treated tissue-engineered cartilage derived from murine iPSCs, …