Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Biomedical Engineering and Bioengineering

Injectable Immunomodulatory Strategies To Enhance Muscle Recovery Following Injury, Tai Huu Huynh Aug 2023

Injectable Immunomodulatory Strategies To Enhance Muscle Recovery Following Injury, Tai Huu Huynh

Graduate Theses and Dissertations

Although skeletal muscle displays an astonishing regenerative capacity, injuries or diseases that resulted in bedridden or chronic muscle wasting can overwhelm this intrinsic feature of skeletal muscle and lead to functional deficit (range of motion and/or strength) and overall reduction in quality of life. Microenvironmental cues within injured skeletal muscle dictate regenerative and repair process which are tightly coordinated interplay among resident cells, cells recruitment and immune response following an assault in the muscle extracellular matrix (ECM). The successful regeneration of functional tissues requires both appropriate modulation of the inflammatory response, and activation of a variety of cell populations. Biomaterials …


The Effects Of Metronomic And Maximum-Tolerated Dose Chemotherapy In Colorectal Cancer Angiogenesis: A Combined Approach Using Endoscopic Diffuse Reflectance Spectroscopy And Mrna Expression, Ariel Isaac Mundo Ortiz May 2022

The Effects Of Metronomic And Maximum-Tolerated Dose Chemotherapy In Colorectal Cancer Angiogenesis: A Combined Approach Using Endoscopic Diffuse Reflectance Spectroscopy And Mrna Expression, Ariel Isaac Mundo Ortiz

Graduate Theses and Dissertations

Colorectal cancer (CRC) continues to be one of the most incident and deadliest types of cancer worldwide. Chemotherapy has proven effective to reduce tumor burden for CRC patients, but there are several disadvantages associated with the use of mainstay maximtolerated dose (MTD) chemotherapeutic strategies. Metronomic chemotherapy (MET) has been developed as an alternative that addresses the shortcomings of maximum-tolerated dose chemotherapy but so far its effectiveness as a neoadjuvant strategy for CRC has not been explored.

This dissertation uses a combined optics and molecular biology approach (using diffuse reflectance spectroscopy and mRNA expression) to study the changes in angiogenesis and …


Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi Jul 2021

Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi

Graduate Theses and Dissertations

This research focused on developing biosensing method and biosensing device for rapid detection of pathogens in poultry: Salmonella Typhimurium and avian influenza virus H5N1. The first part of the dissertation reports an original research on the development of a portable biosensing device for Salmonella detection. The device was designed and constructed based on a previously developed optical biosensing method, using immuno-magnetic nanoparticles to specifically capture target bacteria, and immuno-quantum dot beads to label the target bacteria for fluorescence detection. All the actions of sample mixing, magnetic separation, and fluorescence detection were controlled automatically in a disposable microfluidic chip in the …


Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra Jul 2021

Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra

Graduate Theses and Dissertations

The goal of this research is to characterize the electromagnetic properties of biological and non-biological materials at terahertz (THz), millimeter-wave, and microwave frequency bands. The biological specimens are measured using the THz imaging and spectroscopy system, whereas the non-biological materials are measured using the microwave and millimeter-wave free-space system. These facilities are located in the Engineering Research Center at the University of Arkansas. The THz imaging system (TPS 3000) uses a Ti-Sapphire laser directed on the photoconductive antennas to generate a THz time domain pulse. Upon using the Fourier Transform, the spectrum of the pulsed THz signal includes frequencies from …


Understanding Radiation Resistance In Head And Neck Tumor Xenografts Using Diffuse Reflectance And Raman Spectroscopy, Sina Dadgar Dec 2020

Understanding Radiation Resistance In Head And Neck Tumor Xenografts Using Diffuse Reflectance And Raman Spectroscopy, Sina Dadgar

Graduate Theses and Dissertations

Each year, 800,000 new patients are diagnosed with head and neck squamous cell carcinoma (HNSCC), a majority of whom are treated with a combination of daily fractions of radiation and weekly chemotherapy sessions for up to seven weeks. Current methods to evaluate treatment response of individual patients are limited to anatomical measurements of tumor burden using CT scan or MRI 4-8 weeks after completion of treatment. However, earlier knowledge of radiation-response prior to or at early days after commencement of therapy can aid oncologist with escalating and de-escalating treatment plans for exceptionally non-responding and responding patients. Such a knowledge can …


Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari Dec 2019

Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari

Graduate Theses and Dissertations

Delivering effective and non-toxic doses of bioactive materials that can aid in activating tissue regeneration to wounded tissue has proven to be an enormous challenge. This study was designed to produce a potential therapeutic recombinant protein by fusing two collagen binding domains to basic fibroblast growth factors (bFGF) through a collagenase cleavage site linker, so it can release the bFGF in a wound site by the action of this enzyme. The novel fusion protein was expressed in Escherichia coli BL-21 (E. coli) using traditional flask shaker and fed-batch cultivation. Cell lysate was purified by FPLC using Immobilized metal affinity chromatography …


Visualizing Ischemic Skin Flap Necrosis Through Phasor Analysis Of Autofluorescence Lifetime Images, Hallie Ramser Toomer Aug 2019

Visualizing Ischemic Skin Flap Necrosis Through Phasor Analysis Of Autofluorescence Lifetime Images, Hallie Ramser Toomer

Graduate Theses and Dissertations

Necrotic skin flaps are difficult to predict and treat due to the lack of quantitative biomarkers. Label-free multiphoton microscopy is well suited for non-invasively monitoring skin metabolism through NAD(P)H and other intrinsic fluorophores, and offers immediate future directions for assessing necrosis in the clinic. The objective of this study was to assess whether phasor FLIM could be used to evaluate skin flap status and treatment efficacy in ex vivo skin sections. Phasor maps revealed differences in growth factor treatment and region, but changes in skin flap autofluorescence at 755nm excitation and 460nm emission were not just related to NAD(P)H. A …


Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry May 2019

Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry

Graduate Theses and Dissertations

Volumetric muscle loss affects both military and civilian persons. The hallmark of this injury is incomplete muscle regeneration, excessive fibrosis, and chronic inflammatory signaling resulting in permanent functional loss. Since permanent functional loss drastically reduces quality of life, many studies have been conducted to improve force recovery. Current scientific literature considers a repair strategy of either devitalized scaffolds infused with growth factors or viable tissue plus activating factors to be the more promising interventions for optimal force recovery. PURPOSE The purpose of this study is to incorporate autologous repair and physical activity and observe the effects of muscle force recovery …


Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty May 2019

Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty

Graduate Theses and Dissertations

The conglomeration of myriad activities in neural systems often results in prominent oscillations. The primary goal of the research presented in this thesis was to study effects of sensory stimulus on the olfactory system of rats, focusing on the olfactory bulb (OB) and the anterior piriform cortex (aPC). Extracellular electrophysiological measurements revealed distinct frequency bands of oscillations in OB and aPC. However, how these oscillatory fluctuations help the animal to process sensory input is not clearly understood. Here we show high frequency oscillations in olfactory bulb carry feedforward signals to anterior piriform cortex whereas feedback from the aPC is predominantly …


Using Peripheral Venous Pressure Waveforms To Predict Key Hemodynamic Parameters, Ali Zohair A Alalawi May 2019

Using Peripheral Venous Pressure Waveforms To Predict Key Hemodynamic Parameters, Ali Zohair A Alalawi

Graduate Theses and Dissertations

Analysis of peripheral venous pressure (PVP) waveforms is a novel method of monitoring intravascular volume. Two cohorts were used to study the hemodynamics change of the body state and its influence on the PVP using (1) dehydration setting with infants suffering from pyloric stenosis and (2) hemorrhage setting during a craniosynostosis elective surgery. The goal of this research is to develop a minimally invasive method of analyzing the PVP waveforms and find correlations with volume loss.

Twenty-three pyloric stenosis patients PVP were acquired at five stages and were divided into euvolemic, normal fluid volume, and hypovolemic, significant fluid loss. Seven …


Determining The Effect Of Locally Delivered Bioactive Modulators On Macrophage Activation At The Implantation Site Of Different Biomaterials In Rats, Kamel Alkhatib Aug 2018

Determining The Effect Of Locally Delivered Bioactive Modulators On Macrophage Activation At The Implantation Site Of Different Biomaterials In Rats, Kamel Alkhatib

Graduate Theses and Dissertations

Altering the foreign body reaction by targeting macrophages has been of interest in the biomaterials field to improve the integration of longevity of implanted biomedical devices. The objective of this dissertation was to study the effect of locally delivered bioactive modulators on macrophage activation at the implantation site of different biomaterials in rats. Iloprost, a prostacyclin analog, was tested for its ability to direct macrophages to their pro-wound healing phenotype after the implantation of microdialysis probe in the subcutaneous space of male Sprague Dawley rats. This study showed that iloprost can shift macrophage activation states in vivo to the pro-wound …


Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak May 2017

Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak

Graduate Theses and Dissertations

Along with chemotherapy, immunotherapy, and surgery, radiotherapy is one of the most common treatments used against cancer. Around 50% of all cancer patients undergo radiation therapy. While for some patients radiotherapy works efficiently and lead to a complete cancer disappearance, for others treatment outcome may be less favorable due to radioresistance processes happening within a tumor on the molecular level. Radioresistance remains a big challenge for modern oncology. The ability to identify radioresistance at the early stage of radiotherapy would help physicians to improve therapy efficiency. At the current moment, despite the rapid progress in cancer understanding and diagnostic modalities, …


Development And Characterization Of An Autologous Whole Cell Breast Cancer Vaccine, Samantha Leigh Kurtz Dec 2014

Development And Characterization Of An Autologous Whole Cell Breast Cancer Vaccine, Samantha Leigh Kurtz

Graduate Theses and Dissertations

Approximately 40,000 women will die from breast cancer in the United States in 2014. About 90% of these deaths will be due to metastases, rather than the primary tumor and majority of metastases are due to the recurrence and progression of non-metastatic disease. Current adjuvant treatments, such as chemotherapy and radiation, have severe side effects and may result in overtreatment and drug resistance.

Since greater than 90% of patients are diagnosed between stages I-III and have minimal residual disease after treatment, there is an opportunity to treat patients with an autologous breast cancer vaccine. Autologous vaccines under development have a …


Development Of A Heart Rate Variability Measurement System Using Embedded Electronics, Naresh Kumar Velmurugan Dec 2014

Development Of A Heart Rate Variability Measurement System Using Embedded Electronics, Naresh Kumar Velmurugan

Graduate Theses and Dissertations

Recent advances in embedded electronics have a remarkable influence on the health care system. One of the most important applications is to monitor the health care of the patients at anytime and anyplace. In the last two decades, many researchers have focused mainly on heart rate variability (HRV) measurements. Patient's heart rate variability should be continuously monitored to help them in case of emergency. Under these circumstances, patients are required to have a HRV measuring kit for a constant observation.

The proposed project focuses on the development of a heart rate variability measurement system with the use of embedded electronics. …


Hybrid Nanostructured Textile Bioelectrode For Unobtrusive Health Monitoring, Pratyush Rai Aug 2013

Hybrid Nanostructured Textile Bioelectrode For Unobtrusive Health Monitoring, Pratyush Rai

Graduate Theses and Dissertations

Coronary heart disease, cardiovascular diseases and strokes are the leading causes of mortality in United States of America. Timely point-of-care health diagnostics and therapeutics for person suffering from these diseases can save thousands of lives. However, lack of accessible minimally intrusive health monitoring systems makes timely diagnosis difficult and sometimes impossible. To remedy this problem, a textile based nano-bio-sensor was developed and evaluated in this research. The sensor was made of novel array of vertically standing nanostructures that are conductive nano-fibers projecting from a conductive fabric. These sensor electrodes were tested for the quality of electrical contact that they made …


Design And Implementation Of Wireless Point-Of-Care Health Monitoring Systems: Diagnosis For Sleep Disorders And Cardiovascular Diseases, Se Chang Oh May 2013

Design And Implementation Of Wireless Point-Of-Care Health Monitoring Systems: Diagnosis For Sleep Disorders And Cardiovascular Diseases, Se Chang Oh

Graduate Theses and Dissertations

Chronic sleep disorders are present in 40 million people in the United States. More than 25 million people remain undiagnosed and untreated, which accounts for over $22 billion in unnecessary healthcare costs. In addition, another major chronic disease is the heart diseases which cause 23.8% of the deaths in the United States. Thus, there is a need for a low cost, reliable, and ubiquitous patient monitoring system. A remote point-of-care system can satisfy this need by providing real time monitoring of the patient's health condition at remote places. However, the currently available POC systems have some drawbacks; the fixed number …


Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera May 2012

Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera

Graduate Theses and Dissertations

A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be related to several diseases such as cancer, and Parkinson's diseases, so to be able to develop more effective diseases treatments their interactions have to be well understood. Amine-functionalized polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 ìm in diameter were used to immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x …


Aptamer-Based Spr Biosensor For Detection Of Avian Influenza Virus, Hua Bai May 2012

Aptamer-Based Spr Biosensor For Detection Of Avian Influenza Virus, Hua Bai

Graduate Theses and Dissertations

Rapid and specific detection of avian influenza (AI) virus is urgently needed with the concerns over the outbreaks of highly pathogenic H5N1 avian influenza in animal and human infection. Aptamers are artificial oligonucleic acid that can specifically bind to target molecules. They show comparable affinity for target virus and better thermal stability than monoclonal antibodies. Those advantages make aptamers promising candidates in diagnostic and detection applications. The goal of this research was to use DNA&ndashaptamer as the specific recognition element in a portable surface plasmon resonance (SPR) biosensor for detection of AI H5N1 virus in poultry.

A SPR biosensor was …


Design And Fabrication Of Nanofluidic Systems For Biomolecule Characterizations, Orain Ansel Hibbert Dec 2011

Design And Fabrication Of Nanofluidic Systems For Biomolecule Characterizations, Orain Ansel Hibbert

Graduate Theses and Dissertations

Nanofluidic channel systems were designed and fabricated by combining MEMS microfabrication with AFM nanolithography. In the fabrication process flow, photolithography was first utilized to pattern microfluidic channels and reservoirs on a 4" Pyrex substrate. Subsequently, atomic force microscopy (AFM) based nanolithography was used to mechanically fabricate nanochannels to connect the microreservoirs which formed the inlet and outlet of the nanofluidic system. A Tap190 Diamond-Like Carbon (DLC) AFM tip with a force constant of 48 N/m and a radius of less than 15 nm was used as the nanolithography tool. The resultant nanochannel ranges from 20 to 80 µm in length …